-
1
-
-
0000807967
-
Transformations of multivariate data
-
D. F. Andrews, R. Gnanadesikan, and J. L. Warner, “Transformations of multivariate data”, Biometrics, vol. 27, pp. 825-840, 1971.
-
(1971)
Biometrics
, vol.27
, pp. 825-840
-
-
Andrews, D.F.1
Gnanadesikan, R.2
Warner, J.L.3
-
2
-
-
0022691022
-
Maximum likelihood estimation for multivariate mixture observations of Markov Chains
-
Mar.
-
B. H. Juang, S. E. Levinson, and M. M. Sondhi, “Maximum likelihood estimation for multivariate mixture observations of Markov Chains”, IEEE Trans. Inform. Theory, vol. IT-32, pp. 307-309, Mar. 1986.
-
(1986)
IEEE Trans. Inform. Theory
, vol.IT-32
, pp. 307-309
-
-
Juang, B.H.1
Levinson, S.E.2
Sondhi, M.M.3
-
3
-
-
0031632815
-
Learning to resolve natural language ambiguities: A unified approach
-
Menlo Park, CA
-
D. Roth, “Learning to resolve natural language ambiguities: A unified approach”, in Proc. Conf. Amer. Assoc. Artificial Intell.,Menlo Park, CA, 1998, pp. 806-813.
-
(1998)
Proc. Conf. Amer. Assoc. Artificial Intell.
, pp. 806-813
-
-
Roth, D.1
-
4
-
-
0028466072
-
The importance of cepstral parameter correlations in speech recognition
-
A. Ljolje, “The importance of cepstral parameter correlations in speech recognition”, Comput., Speech, Language, vol. 8, pp. 223-232, 1994.
-
(1994)
Comput., Speech, Language
, vol.8
, pp. 223-232
-
-
Ljolje, A.1
-
9
-
-
84892187452
-
Maximum likelihood modeling with Gaussian distributions for classification
-
Seattle, WA
-
R. A. Gopinath, “Maximum likelihood modeling with Gaussian distributions for classification”, in Proc. IEEE ICASSP, Seattle, WA, 1998.
-
(1998)
Proc. IEEE ICASSP
-
-
Gopinath, R.A.1
-
15
-
-
0001065501
-
On the comparative anatomy of transformations
-
J. W. Tukey, “On the comparative anatomy of transformations”, Ann. Math. Statist., vol. 28, pp. 602-632, 1957.
-
(1957)
Ann. Math. Statist.
, vol.28
, pp. 602-632
-
-
Tukey, J.W.1
-
16
-
-
0000133998
-
An analysis of transformations
-
G. E. P. Box and D. R. Cox, “An analysis of transformations”, J. R. Statist. Soc., vol. 26, pp. 211-252, 1964.
-
(1964)
J. R. Statist. Soc.
, vol.26
, pp. 211-252
-
-
Box, G.E.P.1
Cox, D.R.2
-
18
-
-
84898929664
-
EM algorithms for PCA and SPCA
-
Cambridge, MA: MIT Press
-
S. Roweis, “EM algorithms for PCA and SPCA”, in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1998, vol. 10, pp. 626-632.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 626-632
-
-
Roweis, S.1
-
19
-
-
84985598237
-
Canonical variate analysis-A general formulation
-
N. Campbell, “Canonical variate analysis-A general formulation”, Austral. J. Statist., vol. 26, pp. 86-96, 1984.
-
(1984)
Austral. J. Statist.
, vol.26
, pp. 86-96
-
-
Campbell, N.1
-
20
-
-
0005324952
-
Discriminant analysis by Gaussian mixtures
-
Murray Hill, NJ, Tech. Rep.
-
T. Hastie and R. Tibshirani, “Discriminant analysis by Gaussian mixtures”, AT&T Bell Labs., Murray Hill, NJ, Tech. Rep., 1994.
-
(1994)
AT&T Bell Labs.
-
-
Hastie, T.1
Tibshirani, R.2
-
21
-
-
0003871508
-
Investigation of silicon-auditory models and generalization of linear discriminant analysis for improved speech recognition
-
John Hopkins Univ., Baltimore, MD
-
N. Kumar, “Investigation of silicon-auditory models and generalization of linear discriminant analysis for improved speech recognition”, Ph.D. Dissertation, John Hopkins Univ., Baltimore, MD, 1997.
-
(1997)
Ph.D. Dissertation
-
-
Kumar, N.1
-
23
-
-
0034207888
-
A unifying information-theoretic framework for independent component analysis
-
Mar.
-
T.-W. Lee, M. Girolami, A. J. Bell, and T. J. Sejnowski, “A unifying information-theoretic framework for independent component analysis”, Comput. Math. Applicat., vol. 31, no. 11, pp. 1-21, Mar. 2000.
-
(2000)
Comput. Math. Applicat.
, vol.31
, Issue.11
, pp. 1-21
-
-
Lee, T.-W.1
Girolami, M.2
Bell, A.J.3
Sejnowski, T.J.4
-
27
-
-
85106600538
-
Symplectic nonlinear component analysis
-
Cambridge, MA: MIT Press
-
L. C. Parra, “Symplectic nonlinear component analysis”, in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1996, vol. 8, pp. 437-443.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 437-443
-
-
Parra, L.C.1
-
28
-
-
0024880831
-
Multilayer feed-forward neural networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White, “Multilayer feed-forward neural networks are universal approximators”, Neural Network, vol. 2, pp. 359-366, 1989.
-
(1989)
Neural Network
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
29
-
-
0024610919
-
A tutorial on Hidden Markov models and selected applications in speech recognition
-
Feb.
-
L. Rabiner, “A tutorial on Hidden Markov models and selected applications in speech recognition”, in Proc. IEEE, vol. 77, Feb. 1989, pp. 257-286.
-
(1989)
Proc. IEEE
, vol.77
, pp. 257-286
-
-
Rabiner, L.1
-
30
-
-
0003462715
-
-
Edinburgh, U.K.: Edinburgh Univ. Press
-
X. D. Huang, Y. Ariki, and M. A. Jack, Hidden Markov Models for Speech Recognition, Edinburgh, U.K.: Edinburgh Univ. Press, 1990.
-
(1990)
Hidden Markov Models for Speech Recognition
-
-
Huang, X.D.1
Ariki, Y.2
Jack, M.A.3
-
32
-
-
0018918171
-
An algorithm for vector quantizer design
-
Jan.
-
Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design”, IEEE Trans. Commun., vol. COM-28, pp. 84-94, Jan. 1980.
-
(1980)
IEEE Trans. Commun.
, vol.COM-28
, pp. 84-94
-
-
Linde, Y.1
Buzo, A.2
Gray, R.M.3
-
33
-
-
0019053271
-
Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
-
Aug.
-
S. B. Davis and P. Mermelstein, “Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences”, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 357-366, Aug. 1980.
-
(1980)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-28
, pp. 357-366
-
-
Davis, S.B.1
Mermelstein, P.2
-
34
-
-
0024768209
-
Speaker independent phone recognition using Hidden Markov models
-
Nov.
-
K.-F. Lee and H.-W. Hon, “Speaker independent phone recognition using Hidden Markov models”, IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1641-1648, Nov. 1989.
-
(1989)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.37
, pp. 1641-1648
-
-
Lee, K.-F.1
Hon, H.-W.2
-
35
-
-
0028530231
-
State clustering in Hidden Markov model continous speech recognition
-
Oct.
-
S. Young and P. Woodland, “State clustering in Hidden Markov model continous speech recognition”, Comput., Speech, Language, vol. 8, no. 4, pp. 369-383, Oct. 1994.
-
(1994)
Comput., Speech, Language
, vol.8
, Issue.4
, pp. 369-383
-
-
Young, S.1
Woodland, P.2
|