메뉴 건너뛰기




Volumn 2, Issue 4, 2001, Pages 458-494

An Extended Transformation Approach to Inductive Logic Programming

Author keywords

Algorithms; Data mining; Experimentation; inductive logic programming; machine learning; relational databases

Indexed keywords


EID: 85008021624     PISSN: 15293785     EISSN: 1557945X     Source Type: Journal    
DOI: 10.1145/383779.383781     Document Type: Article
Times cited : (58)

References (61)
  • 2
    • 0003710495 scopus 로고
    • Inductive Logic Programming: From Machine Learning t Software Engineering
    • The MIT Press
    • Bergadano, F. and Gunetti, D. 1995. Inductive Logic Programming: From Machine Learning t Software Engineering. The MIT Press
    • (1995)
    • Bergadano, F.1    Gunetti, D.2
  • 3
    • 0003851190 scopus 로고
    • A Study inDeep and QualitativeKnowledg for Expert Systems
    • MIT Press, Cambridge, MA
    • Bratko, I., Mozetic, I., and Lavrac, N. 1989. KARDIO. A Study inDeep and QualitativeKnowledg for Expert Systems. MIT Press, Cambridge, MA
    • (1989) KARDIO
    • Bratko, I.1    Mozetic, I.2    Lavrac, N.3
  • 7
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P. and Niblett, T. 1989. The CN2 induction algorithm. Machine Learning 3, 4, 261 283
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 9
    • 84947422232 scopus 로고    scopus 로고
    • Attribute-value learning versus inductive logic programming: The miss ing links
    • D. Page, Ed. Lecture Notes in Artificial Intelligence, Springer-Verlag
    • De Raedt, L. 1998. Attribute-value learning versus inductive logic programming: The miss ing links. In Proceedings of the 8th International Conference on Inductive Logic Programming D. Page, Ed. Lecture Notes in Artificial Intelligence, vol. 1446. Springer-Verlag, 1-8
    • (1998) Proceedings of the 8th International Conference on Inductive Logic Programming , vol.1446 , pp. 1-8
    • De Raedt, L.1
  • 11
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple-instance problem with axis-parallel rectangles
    • Dietterich, T., Lathrop, R., and Lozano-Perez, T. 1997. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence 89, 31-71
    • (1997) Artificial Intelligence , vol.89 , pp. 31-71
    • Dietterich, T.1    Lathrop, R.2    Lozano-Perez, T.3
  • 16
    • 84949227828 scopus 로고    scopus 로고
    • A first-order Bayesian classifier
    • S. Dzeroski and P. A. Flach, Eds Lecture Notes in Artificial Intelligence, Springer-Verlag
    • Flach, P. A. and Lachiche, N. 1999. A first-order Bayesian classifier. In Proceedings of th 9th International Workshop on Inductive Logic Programming, S. Dzeroski and P. A. Flach, Eds Lecture Notes in Artificial Intelligence, vol. 1634. Springer-Verlag, 92-103
    • (1999) Proceedings of th 9th International Workshop on Inductive Logic Programming , vol.1634 , pp. 92-103
    • Flach, P.A.1    Lachiche, N.2
  • 17
    • 84947921682 scopus 로고    scopus 로고
    • Knowledge representation for inductive learning
    • A. Hunter and S. Parsons, Eds. Lecture Notes in Artificial Intelligence, vol. 1638. Springer-Verlag
    • Flach, P. A. 1999. Knowledge representation for inductive learning. In Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU'99), A. Hunter and S. Parsons, Eds. Lecture Notes in Artificial Intelligence, vol. 1638. Springer-Verlag, 160-167
    • (1999) Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU'99) , pp. 160-167
    • Flach, P.A.1
  • 19
    • 0034832530 scopus 로고    scopus 로고
    • Confirmation-guided discovery of first-order rules with Ter-tius
    • Flach, P. A. and Lachiche, N. 2001. Confirmation-guided discovery of first-order rules with Ter-tius. Machine Learning 42, V2, 61-95
    • (2001) Machine Learning , vol.42 , Issue.V2 , pp. 61-95
    • Flach, P.A.1    Lachiche, N.2
  • 23
    • 84957894431 scopus 로고    scopus 로고
    • Learning with abduction
    • S. DZeroski and N. Lavrac, Eds. Lecture Notes in Artificial Intelligence, vol. 1297. Springer-Verlag
    • Kakas, A. and Riguzzi, F. 1997. Learning with abduction. In Proceedings of the 7th International Workshop on Inductive Logic Programming, S. DZeroski and N. Lavrac, Eds. Lecture Notes in Artificial Intelligence, vol. 1297. Springer-Verlag, 181-188
    • (1997) Proceedings of the 7th International Workshop on Inductive Logic Programming , pp. 181-188
    • Kakas, A.1    Riguzzi, F.2
  • 25
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press
    • Klcosgen, W. 1996. Explora: A multipattern and multistrategy discovery assistant. In Advances in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press, 249-271
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 249-271
    • Klcosgen, W.1
  • 28
    • 84947420409 scopus 로고    scopus 로고
    • Stochastic propositionalization of nondeterminate background knowledge
    • D. Page, Ed. Lecture Notes in Artificial Intelligence, vol. 1446. Springer-Verlag
    • Kramer, S., Pfahringer, B., and Helma, C. 1998. Stochastic propositionalization of nondeterminate background knowledge. In Proceedings of the 8th International Conference on Inductive Logic Programming, D. Page, Ed. Lecture Notes in Artificial Intelligence, vol. 1446. Springer-Verlag, 80-94
    • (1998) Proceedings of the 8th International Conference on Inductive Logic Programming , pp. 80-94
    • Kramer, S.1    Pfahringer, B.2    Helma, C.3
  • 30
    • 0004080766 scopus 로고
    • Inductive Logic Programming: Techniques and Applications
    • Ellis Horwood
    • Lavrač, N. and Dzeroski, S. 1994. Inductive Logic Programming: Techniques and Applications. Ellis Horwood
    • (1994)
    • Lavrač, N.1    Dzeroski, S.2
  • 31
    • 84950502571 scopus 로고
    • Learning nonrecursive definitions of relations with LINUS
    • Y. Kodratoff, Ed. Lecture Notes in Artificial Intelligence, Springer-Verlag
    • Lavrač, N., Dzeroski, S., and Grobelnik, M. 1991. Learning nonrecursive definitions of relations with LINUS. In Proceedings of the 5th European Working Session on Learning, Y. Kodratoff, Ed. Lecture Notes in Artificial Intelligence, vol. 482. Springer-Verlag, 265-281
    • (1991) Proceedings of the 5th European Working Session on Learning , vol.482 , pp. 265-281
    • Lavrač, N.1    Dzeroski, S.2    Grobelnik, M.3
  • 32
    • 0011785695 scopus 로고
    • An approach to dimensionality reduction in learning from deductive databases
    • L. De Raedt, Ed. Department of Computer Science, Katholieke Universiteit Leuven
    • Lavrač, N., Gamberger, D., and Dzeroski, S. 1995. An approach to dimensionality reduction in learning from deductive databases. In Proceedings of the 5th International Workshop on Inductive Logic Programming, L. De Raedt, Ed. Department of Computer Science, Katholieke Universiteit Leuven, 337-354
    • (1995) Proceedings of the 5th International Workshop on Inductive Logic Programming , pp. 337-354
    • Lavrač, N.1    Gamberger, D.2    Dzeroski, S.3
  • 34
    • 0032027879 scopus 로고    scopus 로고
    • A relevancy filter for constructive induction
    • (March-April)
    • Lavrač, N., Gamberger, D., and Turney, P. 1998. A relevancy filter for constructive induction. IEEE Intelligent Systems 13, 2 (March-April), 50-56
    • IEEE Intelligent Systems , vol.13 , pp. 50-56
    • Lavrač, N.1    Gamberger, D.2    Turney, P.3
  • 36
    • 0013157568 scopus 로고    scopus 로고
    • Programming in an integrated functional and logic language
    • (March)
    • Lloyd, J. 1999. Programming in an integrated functional and logic language. Journal of Functional and Logic Programming 1999, 3 (March)
    • (1999) Journal of Functional and Logic Programming , pp. 3
    • Lloyd, J.1
  • 37
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R. Michalski, J. Carbonell, and T. Mitchell, Eds. Tioga, Palo Alto, CA
    • Michalski, R. 1983. A theory and methodology of inductive learning. In Machine Learning: An Artificial Intelligence Approach, R. Michalski, J. Carbonell, and T. Mitchell, Eds. Vol. I. Tioga, Palo Alto, CA, 83-134
    • (1983) Machine Learning: An Artificial Intelligence Approach , vol.1 , pp. 83-134
    • Michalski, R.1
  • 38
    • 2442612280 scopus 로고
    • To the international computing community: A new East-West challenge
    • Oxford University Computing laboratory, Oxford, UK
    • Michie, D., Muggleton, S., Page, D., and Srinivasan, A. 1994. To the international computing community: A new East-West challenge. Tech. rep., Oxford University Computing laboratory, Oxford, UK
    • (1994) Tech. rep.
    • Michie, D.1    Muggleton, S.2    Page, D.3    Srinivasan, A.4
  • 39
    • 84949217475 scopus 로고    scopus 로고
    • Learning rules that classify ocular fundus images for glaucoma diagnosis
    • S. Muggleton, Ed. Lecture Notes in Artificial Intelligence, vol. 1314. Springer-Verlag
    • Mizoguchi, F., Ohwada, H., Daidoji, M., and Shirato, S. 1996. Learning rules that classify ocular fundus images for glaucoma diagnosis. In Proceedings of the 6th International Workshop on Inductive Logic Programming, S. Muggleton, Ed. Lecture Notes in Artificial Intelligence, vol. 1314. Springer-Verlag, 146-162
    • (1996) Proceedings of the 6th International Workshop on Inductive Logic Programming , pp. 146-162
    • Mizoguchi, F.1    Ohwada, H.2    Daidoji, M.3    Shirato, S.4
  • 40
    • 0004109056 scopus 로고
    • Inductive Logic Programming
    • Academic Press
    • Muggleton, S., Ed. 1992. Inductive Logic Programming. Academic Press
    • (1992)
    • Muggleton, S.1
  • 41
    • 77951503082 scopus 로고
    • Inverse entailment and Progol
    • Special issue on Inductive Logic Programming
    • Muggleton, S. 1995. Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming 13, 3-4, 245-286
    • (1995) New Generation Computing , vol.13 , Issue.3-4 , pp. 245-286
    • Muggleton, S.1
  • 42
    • 0028429573 scopus 로고    scopus 로고
    • Inductive logic programming: Theory and methods
    • Muggleton, S. and De Raedt, L. 1994. Inductive logic programming: Theory and methods. Journal of Logic Programming 19-20, 629-679
    • Journal of Logic Programming , vol.19 , Issue.20 , pp. 629-679
    • Muggleton, S.1    Raedt, D.2
  • 46
    • 0004109057 scopus 로고    scopus 로고
    • Foundations of Inductive Logic Programming
    • Lecture Notes in Artificial Intelligence, Springer-Verlag
    • Nienhuys-Cheng, S.-H. and De Wolf, R. 1997. Foundations of Inductive Logic Programming. Lecture Notes in Artificial Intelligence, vol. 1228. Springer-Verlag
    • (1997)
    • Nienhuys-Cheng, S.-H.1    De Wolf, R.2
  • 48
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G. and Haussler, D. 1990. Boolean feature discovery in empirical learning. Machine Learning 5, 71-99
    • (1990) Machine Learning , vol.5 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 49
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • Quinlan, J. 1990. Learning logical definitions from relations. Machine Learning 5, 239-266
    • (1990) Machine Learning , vol.5 , pp. 239-266
    • Quinlan, J.1
  • 50
    • 84934555448 scopus 로고
    • Flattening and saturation: Two representation changes for generalization
    • Rouveirol, C. 1994. Flattening and saturation: Two representation changes for generalization. Machine Learning 14, 2, 219-232
    • (1994) Machine Learning , vol.14 , Issue.2 , pp. 219-232
    • Rouveirol, C.1
  • 52
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms
    • Morgan Kaufmann
    • Skalak, D. 1994. Prototype and feature selection by sampling and random mutation hill climbing algorithms. In Proceedings of the 11th International Conference on Machine Learning. Morgan Kaufmann, 293-301
    • (1994) Proceedings of the 11th International Conference on Machine Learning , pp. 293-301
    • Skalak, D.1
  • 53
    • 9444248896 scopus 로고    scopus 로고
    • Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes
    • S. Muggleton, Ed. Lecture Notes in Artificial Intelligence, vol. 1314. Springer-Verlag
    • Srinivasan, A. and King, R. 1996. Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes. In Proceedings of the 6th International Workshop on Inductive Logic Programming, S. Muggleton, Ed. Lecture Notes in Artificial Intelligence, vol. 1314. Springer-Verlag, 89104
    • (1996) Proceedings of the 6th International Workshop on Inductive Logic Programming , pp. 89104
    • Srinivasan, A.1    King, R.2
  • 54
    • 0005500020 scopus 로고    scopus 로고
    • Predicate invention in inductive logic programming
    • L. De Raedt, Ed. lOS Press
    • Stahl, I. 1996. Predicate invention in inductive logic programming. In Advances in Inductive Logic Programming, L. De Raedt, Ed. lOS Press, 34-47
    • (1996) Advances in Inductive Logic Programming , pp. 34-47
    • Stahl, I.1
  • 55
    • 2442631838 scopus 로고    scopus 로고
    • Low size-complexity inductive logic programming: The East-West challenge considered as a problem in cost-sensitive classification
    • L. De Raedt, Ed. lOS Press
    • Turney, P. 1996. Low size-complexity inductive logic programming: The East-West challenge considered as a problem in cost-sensitive classification. In Advances in Inductive Logic Programming, L. De Raedt, Ed. lOS Press, 308-321
    • (1996) Advances in Inductive Logic Programming , pp. 308-321
    • Turney, P.1
  • 56
    • 85040876697 scopus 로고
    • Principles of Database and Knowledge Base Systems
    • Computer Science Press, Rockville, MA
    • Ullman, J. 1988. Principles of Database and Knowledge Base Systems. Vol. I. Computer Science Press, Rockville, MA
    • (1988)
    • Ullman, J.1
  • 57
    • 27544477092 scopus 로고    scopus 로고
    • Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations
    • Witten, I. and Frank, E. 2000. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann
    • (2000) Morgan Kaufmann
    • Witten, I.1    Frank, E.2
  • 60
    • 84947432924 scopus 로고    scopus 로고
    • Learning structurally indeterminate clauses
    • D. Page, Ed. Lecture Notes in Artificial Intelligence, vol. 1446. Springer-Verlag
    • Zucker, J. and Ganascia, J. 1998. Learning structurally indeterminate clauses. In Proceedings of the 8th International Conference on Inductive Logic Programming, D. Page, Ed. Lecture Notes in Artificial Intelligence, vol. 1446. Springer-Verlag, 235-244
    • (1998) Proceedings of the 8th International Conference on Inductive Logic Programming , pp. 235-244
    • Zucker, J.1    Ganascia, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.