메뉴 건너뛰기




Volumn 36, Issue 4, 2016, Pages 469-476

Impact of selected pre-processing techniques on prediction of risk of early readmission for diabetic patients in India

Author keywords

Data mining; Diabetes; Feature selection; Missing value imputation; Pre processing; Predicting readmission rates

Indexed keywords

ADULT; AREA UNDER THE CURVE; CLASSIFIER; DATA MINING; DECISION TREE; DIABETIC PATIENT; ELECTRONIC MEDICAL RECORD; EXPERIMENTAL STUDY; HOSPITAL READMISSION; HUMAN; INDIA; LOGISTIC REGRESSION ANALYSIS; MAJOR CLINICAL STUDY; MODEL; PREDICTION; RECALL; YOUNG ADULT;

EID: 85007601515     PISSN: 09733930     EISSN: 19983832     Source Type: Journal    
DOI: 10.1007/s13410-016-0495-4     Document Type: Article
Times cited : (20)

References (34)
  • 1
    • 84875804873 scopus 로고    scopus 로고
    • The effect of diabetes on hospital readmissions
    • Dungan KM. The effect of diabetes on hospital readmissions. J Diabet Sci Technol. 2012;6(5):1045–52.
    • (2012) J Diabet Sci Technol , vol.6 , Issue.5 , pp. 1045-1052
    • Dungan, K.M.1
  • 2
    • 85007579068 scopus 로고    scopus 로고
    • Kar S. Reducing readmission in the hospital through integrated care cycle [Internet] [cited 10 September] (2015). Available from
    • Kar S. Reducing readmission in the hospital through integrated care cycle [Internet]. Openforum.hbs.org. 2014 [cited 10 September] (2015). Available from: https://openforum.hbs.org/challenge/hbs-hms-health-acceleration-challenge/innovations/reducing-readmission-in-the-hospital-through-integrated-care-cycle
    • (2014) Openforum
  • 3
    • 85007559475 scopus 로고    scopus 로고
    • Silverstein MD, Qin H, Mercer SQ, Fong J, Haydar Z. In Baylor University Medical Center. Proceedings 2008; 21 Suppl 4:363. Baylor University Medical Center
    • Silverstein MD, Qin H, Mercer SQ, Fong J, Haydar Z. Risk factors for 30-day hospital readmission in patients? 65 years of age. In Baylor University Medical Center. Proceedings 2008; 21 Suppl 4:363. Baylor University Medical Center.
    • Risk factors for 30-day hospital readmission in patients? 65 years of age
  • 4
    • 85007579070 scopus 로고    scopus 로고
    • Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records
    • Strack B, DeShazo JP, Gennings C, Olmo JL, Ventura S, Cios KJ, Clore JN. Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records. BioMed Res Int. 2014;3:2014.
    • (2014) BioMed Res Int , vol.3 , pp. 2014
    • Strack, B.1    DeShazo, J.P.2    Gennings, C.3    Olmo, J.L.4    Ventura, S.5    Cios, K.J.6    Clore, J.N.7
  • 5
    • 84918813088 scopus 로고    scopus 로고
    • Predictors of 30 day hospital readmission in patients with type 2 diabetes: a retrospective, case–control, database study
    • COI: 1:CAS:528:DC%2BC2cXitFalt7jN, PID: 25369567
    • Eby E, Hardwick C, Yu M, Gelwicks S, Deschamps K, Xie J, George T. Predictors of 30 day hospital readmission in patients with type 2 diabetes: a retrospective, case–control, database study. Curr Med Res Opin. 2015;31(1):107–14.
    • (2015) Curr Med Res Opin , vol.31 , Issue.1 , pp. 107-114
    • Eby, E.1    Hardwick, C.2    Yu, M.3    Gelwicks, S.4    Deschamps, K.5    Xie, J.6    George, T.7
  • 6
    • 84923668771 scopus 로고    scopus 로고
    • Hospital readmission of patients with diabetes
    • Rubin DJ. Hospital readmission of patients with diabetes. Curr Diabet Rep. 2015;15(4):1–9.
    • (2015) Curr Diabet Rep , vol.15 , Issue.4 , pp. 1-9
    • Rubin, D.J.1
  • 7
    • 84908331649 scopus 로고    scopus 로고
    • Early readmission among patients with diabetes: a qualitative assessment of contributing factors
    • Rubin DJ, Donnell-Jackson K, Jhingan R, Golden SH, Paranjape A. Early readmission among patients with diabetes: a qualitative assessment of contributing factors. J Diabet Complicat. 2014;28(6):869–73.
    • (2014) J Diabet Complicat , vol.28 , Issue.6 , pp. 869-873
    • Rubin, D.J.1    Donnell-Jackson, K.2    Jhingan, R.3    Golden, S.H.4    Paranjape, A.5
  • 8
    • 33747607232 scopus 로고    scopus 로고
    • Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients
    • PID: 16815882
    • Billings J, Dixon J, Mijanovich T, Wennberg D. Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients. BMJ. 2006;333(7563):327.
    • (2006) BMJ , vol.333 , Issue.7563 , pp. 327
    • Billings, J.1    Dixon, J.2    Mijanovich, T.3    Wennberg, D.4
  • 9
    • 84868244513 scopus 로고    scopus 로고
    • Quantitative tools for addressing hospital readmissions
    • PID: 23121730
    • Lagoe RJ, Nanno DS, Luziani ME. Quantitative tools for addressing hospital readmissions. BMC Res Notes. 2012;5(1):620.
    • (2012) BMC Res Notes , vol.5 , Issue.1 , pp. 620
    • Lagoe, R.J.1    Nanno, D.S.2    Luziani, M.E.3
  • 10
    • 47549115392 scopus 로고    scopus 로고
    • Development and validation of a model for predicting emergency admissions over the next year (PEONY): a UK historical cohort study
    • Donnan PT, Dorward DW, Mutch B, Morris AD. Development and validation of a model for predicting emergency admissions over the next year (PEONY): a UK historical cohort study. Arch Int Med. 2008;168(13):1416–22.
    • (2008) Arch Int Med , vol.168 , Issue.13 , pp. 1416-1422
    • Donnan, P.T.1    Dorward, D.W.2    Mutch, B.3    Morris, A.D.4
  • 11
    • 84868155092 scopus 로고    scopus 로고
    • Comparing methods to calculate hospital-specific rates of early death or urgent readmission
    • van Walraven C, Wong J, Hawken S, Forster AJ. Comparing methods to calculate hospital-specific rates of early death or urgent readmission. Can Med Assoc J. 2012;184(15):E810–7.
    • (2012) Can Med Assoc J , vol.184 , Issue.15 , pp. E810-E817
    • van Walraven, C.1    Wong, J.2    Hawken, S.3    Forster, A.J.4
  • 12
    • 84876785353 scopus 로고    scopus 로고
    • Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model
    • Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Int Med. 2013;173(8):632–8.
    • (2013) JAMA Int Med , vol.173 , Issue.8 , pp. 632-638
    • Donzé, J.1    Aujesky, D.2    Williams, D.3    Schnipper, J.L.4
  • 13
    • 77951240308 scopus 로고    scopus 로고
    • Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community
    • van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, Austin PC, Forster AJ. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. Can Med Assoc J. 2010;182(6):551–7.
    • (2010) Can Med Assoc J , vol.182 , Issue.6 , pp. 551-557
    • van Walraven, C.1    Dhalla, I.A.2    Bell, C.3    Etchells, E.4    Stiell, I.G.5    Zarnke, K.6    Austin, P.C.7    Forster, A.J.8
  • 14
    • 84865126986 scopus 로고    scopus 로고
    • Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30)
    • PID: 22885591
    • Billings J, Blunt I, Steventon A, Georghiou T, Lewis G, Bardsley M. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30). BMJ open. 2012;2(4):e001667.
    • (2012) BMJ open , vol.2 , Issue.4
    • Billings, J.1    Blunt, I.2    Steventon, A.3    Georghiou, T.4    Lewis, G.5    Bardsley, M.6
  • 15
    • 84903815740 scopus 로고    scopus 로고
    • A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study
    • AbdelRahman SE, Zhang M, Bray BE, Kawamoto K. A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study. BMC Med Inform Decis Making. 2014;14(1):1.
    • (2014) BMC Med Inform Decis Making , vol.14 , Issue.1 , pp. 1
    • AbdelRahman, S.E.1    Zhang, M.2    Bray, B.E.3    Kawamoto, K.4
  • 16
    • 85007579049 scopus 로고    scopus 로고
    • Meadem N, Verbiest N, Zolfaghar K, Agarwal J, Chin SC, Roy SB. Exploring preprocessing techniques for prediction of risk of readmission for congestive heart failure patients
    • Meadem N, Verbiest N, Zolfaghar K, Agarwal J, Chin SC, Roy SB. Exploring preprocessing techniques for prediction of risk of readmission for congestive heart failure patients. In Data mining and healthcare (DMH), at International Conference on Knowledge Discovery and Data Mining (KDD) 2013.
    • (2013) Data mining and healthcare (DMH), at International Conference on Knowledge Discovery and Data Mining (KDD)
  • 17
    • 84961833476 scopus 로고    scopus 로고
    • Duggal R, Khatri SK, Shukla B. Improving patient matching: single patient view for clinical decision support using Big Data analytics, 2015 4th International Conference on 2015 Sep 2 (pp. 1–6). IEEE
    • Duggal R, Khatri SK, Shukla B. Improving patient matching: single patient view for clinical decision support using Big Data analytics. In Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), 2015 4th International Conference on 2015 Sep 2 (pp. 1–6). IEEE.
    • Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions)
  • 18
    • 85007592548 scopus 로고    scopus 로고
    • Duggal, Reena, Shukla, B. & Khatri, S. K., National Conference on Computing, Communication and Information Processing 2015 (NCCCIP-2015), (DOI: NCCIP2015/NERIST/02/03–05-2015/CP28)
    • Duggal, Reena, Shukla, B. & Khatri, S. K. Big Data Analytics in Indian healthcare system—opportunities and challenges, National Conference on Computing, Communication and Information Processing 2015 (NCCCIP-2015), ISBN: 978–93–84935-27-6, (DOI: NCCIP2015/NERIST/02/03–05-2015/CP28).
    • Big Data Analytics in Indian healthcare system—opportunities and challenges
  • 19
    • 84879719070 scopus 로고    scopus 로고
    • New bundled world: quality of care and readmission in diabetes patients
    • Chen JY, Ma Q, Chen H, Yermilov I. New bundled world: quality of care and readmission in diabetes patients. J Diabet Sci Technol. 2012;6(3):563–71.
    • (2012) J Diabet Sci Technol , vol.6 , Issue.3 , pp. 563-571
    • Chen, J.Y.1    Ma, Q.2    Chen, H.3    Yermilov, I.4
  • 20
    • 84947903431 scopus 로고    scopus 로고
    • Domain knowledge based hierarchical feature selection for 30-day hospital readmission prediction. In Artificial intelligence in medicine
    • Radovanovic S, Vukicevic M, Kovacevic A, Stiglic G, Obradovic Z. Domain knowledge based hierarchical feature selection for 30-day hospital readmission prediction. In Artificial intelligence in medicine. Springer International Publishing; 2015 pp. 96–100.
    • (2015) Springer International Publishing , pp. 96-100
    • Radovanovic, S.1    Vukicevic, M.2    Kovacevic, A.3    Stiglic, G.4    Obradovic, Z.5
  • 21
    • 85007589253 scopus 로고    scopus 로고
    • Hosseinzadeh A, Izadi M, Verma A, Precup D, Buckeridge D. Assessing the predictability of hospital readmission using machine learning
    • Hosseinzadeh A, Izadi M, Verma A, Precup D, Buckeridge D. Assessing the predictability of hospital readmission using machine learning. In Twenty-Fifth IAAI Conference; 2013.
    • (2013) Twenty-Fifth IAAI Conference
  • 22
    • 84936996800 scopus 로고    scopus 로고
    • A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD
    • PID: 24792081
    • Shams I, Ajorlou S, Yang K. A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD. Health Care Manag Sci. 2015;18(1):19–34.
    • (2015) Health Care Manag Sci , vol.18 , Issue.1 , pp. 19-34
    • Shams, I.1    Ajorlou, S.2    Yang, K.3
  • 26
    • 84965112724 scopus 로고    scopus 로고
    • Elsevier, Amsterdam: 310-317
    • Han J, Kamber M. Data mining. 2nd ed. Amsterdam: Elsevier; 2006. p. 72–85.310-317
    • (2006) Data mining , pp. 72-85
    • Han, J.1    Kamber, M.2
  • 28
    • 70349131271 scopus 로고    scopus 로고
    • A review of missing data treatment methods
    • Peng L, Lei L. A review of missing data treatment methods. Intell Inf Manag Syst Technol. 2005;1(3):412–9.
    • (2005) Intell Inf Manag Syst Technol , vol.1 , Issue.3 , pp. 412-419
    • Peng, L.1    Lei, L.2
  • 29
    • 57749113497 scopus 로고    scopus 로고
    • Su X, Khoshgoftaar TM, Greiner R. Using imputation techniques to help learn accurate classifiers. In Tools with artificial intelligence, 2008. ICTAI’08; 1:437–444. IEEE
    • Su X, Khoshgoftaar TM, Greiner R. Using imputation techniques to help learn accurate classifiers. In Tools with artificial intelligence, 2008. ICTAI’08. 20th IEEE International Conference on 2008; 1:437–444. IEEE.
    • 20th IEEE International Conference on 2008
  • 31
    • 84867409450 scopus 로고    scopus 로고
    • Selecting the best prediction model for readmission
    • PID: 22880158
    • Lee EW. Selecting the best prediction model for readmission. J Prev Med Public Health. 2012;45(4):259–66.
    • (2012) J Prev Med Public Health , vol.45 , Issue.4 , pp. 259-266
    • Lee, E.W.1
  • 33
    • 85120363300 scopus 로고    scopus 로고
    • I.E. International Conference on; 2013pp. 64–71
    • Zolfaghar K, Meadem N, Teredesai A, Roy SB, Chin SC, Muckian B. Big data solutions for predicting risk-of-readmission for congestive heart failure patients. InBig Data, 2013 I.E. International Conference on; 2013pp. 64–71. IEEE.
    • (2013) IEEE
    • Zolfaghar, K.1    Meadem, N.2    Teredesai, A.3    Roy, S.B.4    Chin, S.C.5
  • 34
    • 84902352333 scopus 로고    scopus 로고
    • Divide-n-Discover discretization based data exploration framework for healthcare analytics
    • Chin SC, Zolfaghar K, Roy SB, Teredesai A, Amoroso P. Divide-n-Discover discretization based data exploration framework for healthcare analytics. Healthinf 2014; 329-333.
    • (2014) Healthinf , pp. 329-333
    • Chin, S.C.1    Zolfaghar, K.2    Roy, S.B.3    Teredesai, A.4    Amoroso, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.