-
1
-
-
84875804873
-
The effect of diabetes on hospital readmissions
-
Dungan KM. The effect of diabetes on hospital readmissions. J Diabet Sci Technol. 2012;6(5):1045–52.
-
(2012)
J Diabet Sci Technol
, vol.6
, Issue.5
, pp. 1045-1052
-
-
Dungan, K.M.1
-
2
-
-
85007579068
-
-
Kar S. Reducing readmission in the hospital through integrated care cycle [Internet] [cited 10 September] (2015). Available from
-
Kar S. Reducing readmission in the hospital through integrated care cycle [Internet]. Openforum.hbs.org. 2014 [cited 10 September] (2015). Available from: https://openforum.hbs.org/challenge/hbs-hms-health-acceleration-challenge/innovations/reducing-readmission-in-the-hospital-through-integrated-care-cycle
-
(2014)
Openforum
-
-
-
3
-
-
85007559475
-
-
Silverstein MD, Qin H, Mercer SQ, Fong J, Haydar Z. In Baylor University Medical Center. Proceedings 2008; 21 Suppl 4:363. Baylor University Medical Center
-
Silverstein MD, Qin H, Mercer SQ, Fong J, Haydar Z. Risk factors for 30-day hospital readmission in patients? 65 years of age. In Baylor University Medical Center. Proceedings 2008; 21 Suppl 4:363. Baylor University Medical Center.
-
Risk factors for 30-day hospital readmission in patients? 65 years of age
-
-
-
4
-
-
85007579070
-
Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records
-
Strack B, DeShazo JP, Gennings C, Olmo JL, Ventura S, Cios KJ, Clore JN. Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records. BioMed Res Int. 2014;3:2014.
-
(2014)
BioMed Res Int
, vol.3
, pp. 2014
-
-
Strack, B.1
DeShazo, J.P.2
Gennings, C.3
Olmo, J.L.4
Ventura, S.5
Cios, K.J.6
Clore, J.N.7
-
5
-
-
84918813088
-
Predictors of 30 day hospital readmission in patients with type 2 diabetes: a retrospective, case–control, database study
-
COI: 1:CAS:528:DC%2BC2cXitFalt7jN, PID: 25369567
-
Eby E, Hardwick C, Yu M, Gelwicks S, Deschamps K, Xie J, George T. Predictors of 30 day hospital readmission in patients with type 2 diabetes: a retrospective, case–control, database study. Curr Med Res Opin. 2015;31(1):107–14.
-
(2015)
Curr Med Res Opin
, vol.31
, Issue.1
, pp. 107-114
-
-
Eby, E.1
Hardwick, C.2
Yu, M.3
Gelwicks, S.4
Deschamps, K.5
Xie, J.6
George, T.7
-
6
-
-
84923668771
-
Hospital readmission of patients with diabetes
-
Rubin DJ. Hospital readmission of patients with diabetes. Curr Diabet Rep. 2015;15(4):1–9.
-
(2015)
Curr Diabet Rep
, vol.15
, Issue.4
, pp. 1-9
-
-
Rubin, D.J.1
-
7
-
-
84908331649
-
Early readmission among patients with diabetes: a qualitative assessment of contributing factors
-
Rubin DJ, Donnell-Jackson K, Jhingan R, Golden SH, Paranjape A. Early readmission among patients with diabetes: a qualitative assessment of contributing factors. J Diabet Complicat. 2014;28(6):869–73.
-
(2014)
J Diabet Complicat
, vol.28
, Issue.6
, pp. 869-873
-
-
Rubin, D.J.1
Donnell-Jackson, K.2
Jhingan, R.3
Golden, S.H.4
Paranjape, A.5
-
8
-
-
33747607232
-
Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients
-
PID: 16815882
-
Billings J, Dixon J, Mijanovich T, Wennberg D. Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients. BMJ. 2006;333(7563):327.
-
(2006)
BMJ
, vol.333
, Issue.7563
, pp. 327
-
-
Billings, J.1
Dixon, J.2
Mijanovich, T.3
Wennberg, D.4
-
9
-
-
84868244513
-
Quantitative tools for addressing hospital readmissions
-
PID: 23121730
-
Lagoe RJ, Nanno DS, Luziani ME. Quantitative tools for addressing hospital readmissions. BMC Res Notes. 2012;5(1):620.
-
(2012)
BMC Res Notes
, vol.5
, Issue.1
, pp. 620
-
-
Lagoe, R.J.1
Nanno, D.S.2
Luziani, M.E.3
-
10
-
-
47549115392
-
Development and validation of a model for predicting emergency admissions over the next year (PEONY): a UK historical cohort study
-
Donnan PT, Dorward DW, Mutch B, Morris AD. Development and validation of a model for predicting emergency admissions over the next year (PEONY): a UK historical cohort study. Arch Int Med. 2008;168(13):1416–22.
-
(2008)
Arch Int Med
, vol.168
, Issue.13
, pp. 1416-1422
-
-
Donnan, P.T.1
Dorward, D.W.2
Mutch, B.3
Morris, A.D.4
-
11
-
-
84868155092
-
Comparing methods to calculate hospital-specific rates of early death or urgent readmission
-
van Walraven C, Wong J, Hawken S, Forster AJ. Comparing methods to calculate hospital-specific rates of early death or urgent readmission. Can Med Assoc J. 2012;184(15):E810–7.
-
(2012)
Can Med Assoc J
, vol.184
, Issue.15
, pp. E810-E817
-
-
van Walraven, C.1
Wong, J.2
Hawken, S.3
Forster, A.J.4
-
12
-
-
84876785353
-
Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model
-
Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA Int Med. 2013;173(8):632–8.
-
(2013)
JAMA Int Med
, vol.173
, Issue.8
, pp. 632-638
-
-
Donzé, J.1
Aujesky, D.2
Williams, D.3
Schnipper, J.L.4
-
13
-
-
77951240308
-
Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community
-
van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, Austin PC, Forster AJ. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. Can Med Assoc J. 2010;182(6):551–7.
-
(2010)
Can Med Assoc J
, vol.182
, Issue.6
, pp. 551-557
-
-
van Walraven, C.1
Dhalla, I.A.2
Bell, C.3
Etchells, E.4
Stiell, I.G.5
Zarnke, K.6
Austin, P.C.7
Forster, A.J.8
-
14
-
-
84865126986
-
Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30)
-
PID: 22885591
-
Billings J, Blunt I, Steventon A, Georghiou T, Lewis G, Bardsley M. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30). BMJ open. 2012;2(4):e001667.
-
(2012)
BMJ open
, vol.2
, Issue.4
-
-
Billings, J.1
Blunt, I.2
Steventon, A.3
Georghiou, T.4
Lewis, G.5
Bardsley, M.6
-
15
-
-
84903815740
-
A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study
-
AbdelRahman SE, Zhang M, Bray BE, Kawamoto K. A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study. BMC Med Inform Decis Making. 2014;14(1):1.
-
(2014)
BMC Med Inform Decis Making
, vol.14
, Issue.1
, pp. 1
-
-
AbdelRahman, S.E.1
Zhang, M.2
Bray, B.E.3
Kawamoto, K.4
-
16
-
-
85007579049
-
-
Meadem N, Verbiest N, Zolfaghar K, Agarwal J, Chin SC, Roy SB. Exploring preprocessing techniques for prediction of risk of readmission for congestive heart failure patients
-
Meadem N, Verbiest N, Zolfaghar K, Agarwal J, Chin SC, Roy SB. Exploring preprocessing techniques for prediction of risk of readmission for congestive heart failure patients. In Data mining and healthcare (DMH), at International Conference on Knowledge Discovery and Data Mining (KDD) 2013.
-
(2013)
Data mining and healthcare (DMH), at International Conference on Knowledge Discovery and Data Mining (KDD)
-
-
-
17
-
-
84961833476
-
-
Duggal R, Khatri SK, Shukla B. Improving patient matching: single patient view for clinical decision support using Big Data analytics, 2015 4th International Conference on 2015 Sep 2 (pp. 1–6). IEEE
-
Duggal R, Khatri SK, Shukla B. Improving patient matching: single patient view for clinical decision support using Big Data analytics. In Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), 2015 4th International Conference on 2015 Sep 2 (pp. 1–6). IEEE.
-
Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions)
-
-
-
18
-
-
85007592548
-
-
Duggal, Reena, Shukla, B. & Khatri, S. K., National Conference on Computing, Communication and Information Processing 2015 (NCCCIP-2015), (DOI: NCCIP2015/NERIST/02/03–05-2015/CP28)
-
Duggal, Reena, Shukla, B. & Khatri, S. K. Big Data Analytics in Indian healthcare system—opportunities and challenges, National Conference on Computing, Communication and Information Processing 2015 (NCCCIP-2015), ISBN: 978–93–84935-27-6, (DOI: NCCIP2015/NERIST/02/03–05-2015/CP28).
-
Big Data Analytics in Indian healthcare system—opportunities and challenges
-
-
-
19
-
-
84879719070
-
New bundled world: quality of care and readmission in diabetes patients
-
Chen JY, Ma Q, Chen H, Yermilov I. New bundled world: quality of care and readmission in diabetes patients. J Diabet Sci Technol. 2012;6(3):563–71.
-
(2012)
J Diabet Sci Technol
, vol.6
, Issue.3
, pp. 563-571
-
-
Chen, J.Y.1
Ma, Q.2
Chen, H.3
Yermilov, I.4
-
20
-
-
84947903431
-
Domain knowledge based hierarchical feature selection for 30-day hospital readmission prediction. In Artificial intelligence in medicine
-
Radovanovic S, Vukicevic M, Kovacevic A, Stiglic G, Obradovic Z. Domain knowledge based hierarchical feature selection for 30-day hospital readmission prediction. In Artificial intelligence in medicine. Springer International Publishing; 2015 pp. 96–100.
-
(2015)
Springer International Publishing
, pp. 96-100
-
-
Radovanovic, S.1
Vukicevic, M.2
Kovacevic, A.3
Stiglic, G.4
Obradovic, Z.5
-
21
-
-
85007589253
-
-
Hosseinzadeh A, Izadi M, Verma A, Precup D, Buckeridge D. Assessing the predictability of hospital readmission using machine learning
-
Hosseinzadeh A, Izadi M, Verma A, Precup D, Buckeridge D. Assessing the predictability of hospital readmission using machine learning. In Twenty-Fifth IAAI Conference; 2013.
-
(2013)
Twenty-Fifth IAAI Conference
-
-
-
22
-
-
84936996800
-
A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD
-
PID: 24792081
-
Shams I, Ajorlou S, Yang K. A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD. Health Care Manag Sci. 2015;18(1):19–34.
-
(2015)
Health Care Manag Sci
, vol.18
, Issue.1
, pp. 19-34
-
-
Shams, I.1
Ajorlou, S.2
Yang, K.3
-
23
-
-
85007571817
-
-
Zolfaghar K, Verbiest N, Agarwal J, Meadem N, Chin SC, Roy SB, Teredesai A, Hazel D, Amoroso P, Reed L. Predicting risk-of-readmission for congestive heart failure patients: a multi-layer approach. arXiv preprint arXiv:1306.2094. 2013.
-
(2013)
Predicting risk-of-readmission for congestive heart failure patients: a multi-layer approach. arXiv preprint arXiv
, vol.1306
, pp. 2094
-
-
Zolfaghar, K.1
Verbiest, N.2
Agarwal, J.3
Meadem, N.4
Chin, S.C.5
Roy, S.B.6
Teredesai, A.7
Hazel, D.8
Amoroso, P.9
Reed, L.10
-
25
-
-
84938795384
-
Improving hospital readmission prediction using domain knowledge based virtual examples
-
Vukicevic M, Radovanovic S, Kovacevic A, Stiglic G, Obradovic Z. Improving hospital readmission prediction using domain knowledge based virtual examples. In Knowledge management in organizations Springer International Publishing; 2015 pp. 695–706.
-
(2015)
In Knowledge management in organizations Springer International Publishing
, pp. 695-706
-
-
Vukicevic, M.1
Radovanovic, S.2
Kovacevic, A.3
Stiglic, G.4
Obradovic, Z.5
-
26
-
-
84965112724
-
-
Elsevier, Amsterdam: 310-317
-
Han J, Kamber M. Data mining. 2nd ed. Amsterdam: Elsevier; 2006. p. 72–85.310-317
-
(2006)
Data mining
, pp. 72-85
-
-
Han, J.1
Kamber, M.2
-
28
-
-
70349131271
-
A review of missing data treatment methods
-
Peng L, Lei L. A review of missing data treatment methods. Intell Inf Manag Syst Technol. 2005;1(3):412–9.
-
(2005)
Intell Inf Manag Syst Technol
, vol.1
, Issue.3
, pp. 412-419
-
-
Peng, L.1
Lei, L.2
-
29
-
-
57749113497
-
-
Su X, Khoshgoftaar TM, Greiner R. Using imputation techniques to help learn accurate classifiers. In Tools with artificial intelligence, 2008. ICTAI’08; 1:437–444. IEEE
-
Su X, Khoshgoftaar TM, Greiner R. Using imputation techniques to help learn accurate classifiers. In Tools with artificial intelligence, 2008. ICTAI’08. 20th IEEE International Conference on 2008; 1:437–444. IEEE.
-
20th IEEE International Conference on 2008
-
-
-
31
-
-
84867409450
-
Selecting the best prediction model for readmission
-
PID: 22880158
-
Lee EW. Selecting the best prediction model for readmission. J Prev Med Public Health. 2012;45(4):259–66.
-
(2012)
J Prev Med Public Health
, vol.45
, Issue.4
, pp. 259-266
-
-
Lee, E.W.1
-
32
-
-
85007430104
-
The WEKA data mining software: an update
-
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. ACM SIGKDD Explor Newsletter. 2009;11(1):10–8.
-
(2009)
ACM SIGKDD Explor Newsletter
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
33
-
-
85120363300
-
I.E. International Conference on; 2013pp. 64–71
-
Zolfaghar K, Meadem N, Teredesai A, Roy SB, Chin SC, Muckian B. Big data solutions for predicting risk-of-readmission for congestive heart failure patients. InBig Data, 2013 I.E. International Conference on; 2013pp. 64–71. IEEE.
-
(2013)
IEEE
-
-
Zolfaghar, K.1
Meadem, N.2
Teredesai, A.3
Roy, S.B.4
Chin, S.C.5
-
34
-
-
84902352333
-
Divide-n-Discover discretization based data exploration framework for healthcare analytics
-
Chin SC, Zolfaghar K, Roy SB, Teredesai A, Amoroso P. Divide-n-Discover discretization based data exploration framework for healthcare analytics. Healthinf 2014; 329-333.
-
(2014)
Healthinf
, pp. 329-333
-
-
Chin, S.C.1
Zolfaghar, K.2
Roy, S.B.3
Teredesai, A.4
Amoroso, P.5
|