메뉴 건너뛰기




Volumn 27, Issue 2, 2017, Pages

Deep learning representation from electroencephalography of early-stage creutzfeldt-jakob disease and features for differentiation from rapidly progressive dementia

Author keywords

Alzheimer's disease; CJD; classification; continuous wavelet transform; deep learning; dementia; EEG; subacute encephalopathies; SVM

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; ELECTROENCEPHALOGRAPHY; ELECTROPHYSIOLOGY; LEARNING SYSTEMS; MULTILAYER NEURAL NETWORKS; MULTILAYERS; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES; WAVELET TRANSFORMS;

EID: 85007400475     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065716500398     Document Type: Article
Times cited : (121)

References (50)
  • 5
    • 0030796565 scopus 로고    scopus 로고
    • Disappearance of periodic sharp wave complexes in Creutzfeldt-Jakob disease
    • U. Aguglia, A. Gambardella, E. Le Piane et al., Disappearance of periodic sharp wave complexes in Creutzfeldt-Jakob disease, Clin. Neurophysiol. 27 (1997) 277-282.
    • (1997) Clin. Neurophysiol. , vol.27 , pp. 277-282
    • Aguglia, U.1    Gambardella, A.2    Le Piane, E.3
  • 6
    • 84873691283 scopus 로고    scopus 로고
    • Teaching neuroimages: Pseudohypertrophic cerebral cortex in end-stage Creutzfeldt-Jakob disease
    • S. Gasparini, E. Ferlazzo, D. Branca, A. Labate, V. Cianci, M. A. Latella and U. Aguglia, Teaching neuroimages: Pseudohypertrophic cerebral cortex in end-stage Creutzfeldt-Jakob disease, Neurology 80 (2013) e21.
    • (2013) Neurology , vol.80 , pp. e21
    • Gasparini, S.1    Ferlazzo, E.2    Branca, D.3    Labate, A.4    Cianci, V.5    Latella, M.A.6    Aguglia, U.7
  • 7
    • 79952417229 scopus 로고    scopus 로고
    • The evaluation of rapidly progressive dementia
    • M. H. Rosenbloom and A. Atri, The evaluation of rapidly progressive dementia, Neurologist 17 (2011) 67-74.
    • (2011) Neurologist , vol.17 , pp. 67-74
    • Rosenbloom, M.H.1    Atri, A.2
  • 9
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, Deep learning in neural networks: An overview, Neural Netw. 61 (2015) 85-117.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 11
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, Learning deep architectures for AI, Found. Trends Mach. Learn. 2(1) (2009) 1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 12
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: Methods and applications
    • L. Deng and D. Yu, Deep learning: Methods and applications, Found. Trends Signal Process. 7(3-4) (2014) 197-387.
    • (2014) Found. Trends Signal Process. , vol.7 , Issue.3-4 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 13
    • 84885898432 scopus 로고    scopus 로고
    • Deep learning-based feature representation for AD/MCI classification
    • H.-II Suk, D. Shen, Deep learning-based feature representation for AD/MCI classification, Med. Image Comput. Comput. Assist. Interv. 16(2) (2013) 583-590.
    • (2013) Med. Image Comput. Comput. Assist. Interv. , vol.16 , Issue.2 , pp. 583-590
    • Suk, H.-I.I.1    Shen, D.2
  • 14
    • 84922351373 scopus 로고    scopus 로고
    • Twolayer contractive encodins for learning stable nonlinear features
    • H. Schulz, K. Cho, T. Raiko and S. Behnke, Twolayer contractive encodins for learning stable nonlinear features, Neural Netw. 64 (2015) 4-11.
    • (2015) Neural Netw. , vol.64 , pp. 4-11
    • Schulz, H.1    Cho, K.2    Raiko, T.3    Behnke, S.4
  • 15
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313(5786) (2006) 540-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 507-540
    • Hinton, G.1    Salakhutdinov, R.2
  • 18
    • 79960360564 scopus 로고    scopus 로고
    • Autoantibodies associated with diseases of the CNS: New developments and future challenges
    • A. Vincent, C. G. Bien, S. R. Irani and P. Waters Autoantibodies associated with diseases of the CNS: New developments and future challenges, Lancet Neurol. 10 (2011) 759-772.
    • (2011) Lancet Neurol. , vol.10 , pp. 759-772
    • Vincent, A.1    Bien, C.G.2    Irani, S.R.3    Waters, P.4
  • 19
    • 0037320310 scopus 로고    scopus 로고
    • Hashimoto encephalopathy: Syndrome or myth?
    • J. Y. Chong, L. P. Rowland and R. D. Utiger, Hashimoto encephalopathy: Syndrome or myth? Arch Neurol. 60 (2003) 164-171.
    • (2003) Arch Neurol. , vol.60 , pp. 164-171
    • Chong, J.Y.1    Rowland, L.P.2    Utiger, R.D.3
  • 20
    • 30844473716 scopus 로고    scopus 로고
    • Recurrent status epilepticus as the main feature of Hashimoto s encephalopathy
    • E. Ferlazzo, M. Raffaele, I. Mazzú and F. Pisani, Recurrent status epilepticus as the main feature of Hashimoto s encephalopathy, Epilepsy Behav. 8 (2006) 328-330.
    • (2006) Epilepsy Behav. , vol.8 , pp. 328-330
    • Ferlazzo, E.1    Raffaele, M.2    Mazzú, I.3    Pisani, F.4
  • 24
    • 84890216072 scopus 로고    scopus 로고
    • Permutation entropy of scalp EEG: A tool to investigate epilepsies: Suggestions from absence epilepsies
    • E. Ferlazzo, N. Mammone, V. Cianci et al., Permutation entropy of scalp EEG: A tool to investigate epilepsies: Suggestions from absence epilepsies, Clin. Neurophysiol. 125 (2014) 13-20.
    • (2014) Clin. Neurophysiol. , vol.125 , pp. 13-20
    • Ferlazzo, E.1    Mammone, N.2    Cianci, V.3
  • 26
    • 0000562670 scopus 로고
    • Decomposition of Hardy functions into square integrable wavelets of constant shape
    • A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984) 723-736.
    • (1984) SIAM J. Math. Anal. , vol.15 , pp. 723-736
    • Grossmann, A.1    Morlet, J.2
  • 27
    • 84859351360 scopus 로고    scopus 로고
    • Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals
    • U. R. Acharya, S. Vinitha Sree, A. P. C. Alvin and J. S. Suri, Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals, Int. J. Neural Syst. 22(2) (2012) 1250002-1-1250002-14.
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.2 , pp. 12500021-125000214
    • Acharya, U.R.1    Vinithaee, S.2    Alvin, A.P.C.3    Suri, J.S.4
  • 28
    • 33847183168 scopus 로고    scopus 로고
    • A machine learning approach to the analysis of timefrequency maps, and its application to neural dynamics
    • F. B. Vialatte, C. Martin, R. Dubois et al., A machine learning approach to the analysis of timefrequency maps, and its application to neural dynamics, Neural Netw. 20(2) (2007) 194-209.
    • (2007) Neural Netw. , vol.20 , Issue.2 , pp. 194-209
    • Vialatte, F.B.1    Martin, C.2    Dubois, R.3
  • 29
    • 51349083532 scopus 로고    scopus 로고
    • A spatio-Temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer s disease
    • H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, A spatio-Temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer s disease, Neurosci. Lett. 444(2) (2008) 190-194.
    • (2008) Neurosci. Lett. , vol.444 , Issue.2 , pp. 190-194
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 30
    • 79952194903 scopus 로고    scopus 로고
    • Fractality and a wavelet-chaos methodology for EEG-based diagnosis of Alzheimer s disease
    • A. Ahmadlou, H. Adeli and A. Adeli, Fractality and a wavelet-chaos methodology for EEG-based diagnosis of Alzheimer s disease, Alzheimer Dis. Assoc. Disorders 25(1) (2011) 85-92.
    • (2011) Alzheimer Dis. Assoc. Disorders , vol.25 , Issue.1 , pp. 85-92
    • Ahmadlou, A.1    Adeli, H.2    Adeli, A.3
  • 31
    • 79953032936 scopus 로고    scopus 로고
    • Probabilistic neural networks for EEG-based diagnosis of Alzheimer s disease using conventional and wavelet coherence
    • Z. Sankari and H. Adeli, Probabilistic neural networks for EEG-based diagnosis of Alzheimer s disease using conventional and wavelet coherence, J. Neurosci. Methods 197(1) (2011) 165-170.
    • (2011) J. Neurosci. Methods , vol.197 , Issue.1 , pp. 165-170
    • Sankari, Z.1    Adeli, H.2
  • 32
    • 84947870058 scopus 로고    scopus 로고
    • Assembling a multi-feature EEG classifier for left-right motor data using wavelet-based fuzzy approximate entropy for improved accuracy
    • W. Y. Hsu, Assembling a multi-feature EEG classifier for left-right motor data using wavelet-based fuzzy approximate entropy for improved accuracy, Int. J. Neural Syst. 25(8) (2015) 1550037.
    • (2015) Int. J. Neural Syst. , vol.25 , Issue.8 , pp. 1550037
    • Hsu, W.Y.1
  • 33
    • 84922351373 scopus 로고    scopus 로고
    • Twolayer contractive encodings for learning stable nonlinear features
    • H. Schulz, K. Cho, T. Raiko and S. Behnke, Twolayer contractive encodings for learning stable nonlinear features, Neural Netw. 64 (2015) 4-11.
    • (2015) Neural Netw. , vol.64 , pp. 4-11
    • Schulz, H.1    Cho, K.2    Raiko, T.3    Behnke, S.4
  • 35
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • eds. M. Mozer M. Jordan and T. Petsche MIT Press, Cambridge, MA
    • V. Vapnik, S. Golowich and A. Smola, Support vector method for function approximation, regression estimation, and signal processing, in Advances in Neural Information Processing Systems 9, eds. M. Mozer, M. Jordan and T. Petsche (MIT Press, Cambridge, MA, 1997), pp. 281-287.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 37
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, Support vector networks, Mach. Learn. 20 (1995) 273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 38
    • 84954027508 scopus 로고    scopus 로고
    • Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial
    • Y. Zhang and W. Zhou, Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial, Int. J. Neural Syst. 25(6) (2015) 1550020.
    • (2015) Int. J. Neural Syst. , vol.25 , Issue.6 , pp. 1550020
    • Zhang, Y.1    Zhou, W.2
  • 40
    • 84865103413 scopus 로고    scopus 로고
    • Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer s disease EEG
    • F. C. Morabito, D. Labate, F. La Foresta, A. Bramanti, G. Morabito and I. Palamara, Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer s disease EEG, Entropy 14 (2012) 1186-1202.
    • (2012) Entropy , vol.14 , pp. 1186-1202
    • Morabito, F.C.1    Labate, D.2    La Foresta, F.3    Bramanti, A.4    Morabito, G.5    Palamara, I.6
  • 41
    • 84922376529 scopus 로고    scopus 로고
    • Measuring the usefulness of hidden units in Boltzmann machines with mutual information
    • M. Berglund, T. Raiko and K. Cho, Measuring the usefulness of hidden units in Boltzmann machines with mutual information, Neural Netw. 64 (2015) 12-18.
    • (2015) Neural Netw. , vol.64 , pp. 12-18
    • Berglund, M.1    Raiko, T.2    Cho, K.3
  • 43
    • 40049085566 scopus 로고    scopus 로고
    • Early detection of periodic sharp wave complexes on EEG by independent component analysis in patients with Creutzfeldt-Jakob disease
    • P. S. Wang, Y. T. Wu, C. I. Hung, S. Y. Kwan, S. Teng and B. W. Soomg, Early detection of periodic sharp wave complexes on EEG by independent component analysis in patients with Creutzfeldt-Jakob disease, J. Clin. Neurophysiol. 25(1) (2008) 25-31.
    • (2008) J. Clin. Neurophysiol. , vol.25 , Issue.1 , pp. 25-31
    • Wang, P.S.1    Wu, Y.T.2    Hung, C.I.3    Kwan, S.Y.4    Teng, S.5    Soomg, B.W.6
  • 45
    • 84954026566 scopus 로고    scopus 로고
    • Online epileptic seizure prediction using wavelet-based bi-phase correlation of electrical signal tomography
    • Z. Vahabi, R. Amirfattahi, F. Ghassemi and F. Shayegh, Online epileptic seizure prediction using wavelet-based bi-phase correlation of electrical signal tomography, Int. J. Neural Syst. 25(6) (2015) 1550028.
    • (2015) Int. J. Neural Syst. , vol.25 , Issue.6 , pp. 1550028
    • Vahabi, Z.1    Amirfattahi, R.2    Ghassemi, F.3    Shayegh, F.4
  • 47
    • 21444435892 scopus 로고    scopus 로고
    • Alzheimer s disease and models of computation: Imaging, classification, and neural models
    • H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, Alzheimer s disease and models of computation: Imaging, classification, and neural models, J. Alzheimer s Dis. 7(3) (2005) 187-199.
    • (2005) J. Alzheimer s Dis. , vol.7 , Issue.3 , pp. 187-199
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 48
    • 23844473285 scopus 로고    scopus 로고
    • Alzheimer s disease: Models of computation and analysis of EEGs
    • H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, Alzheimer s disease: Models of computation and analysis of EEGs, Clin. EEG Neurosci. 36(3) (2005) 131-140.
    • (2005) Clin. EEG Neurosci. , vol.36 , Issue.3 , pp. 131-140
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 49
    • 77956469969 scopus 로고    scopus 로고
    • New diagnostic EEG markers of the Alzheimer s disease using visibility graph
    • M. Ahmadlou, H. Adeli and A. Adeli, New diagnostic EEG markers of the Alzheimer s disease using visibility graph, J. Neural Transm. 117(9) (2010) 1099-1109.
    • (2010) J. Neural Transm. , vol.117 , Issue.9 , pp. 1099-1109
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 50
    • 84870532507 scopus 로고    scopus 로고
    • Wavelet coherence model for diagnosis of Alzheimer s disease
    • Z. Sankari, H. Adeli and A. Adeli, Wavelet coherence model for diagnosis of Alzheimer s disease, Clin. EEG Neurosci. 43(3) (2012) 268-278.
    • (2012) Clin. EEG Neurosci. , vol.43 , Issue.3 , pp. 268-278
    • Sankari, Z.1    Adeli, H.2    Adeli, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.