메뉴 건너뛰기




Volumn , Issue , 2016, Pages 85-88

Development of enhanced weed detection system with adaptive thresholding and support vector machine

Author keywords

Automatic greenness identification; Automatic thresholding; Image segmentation; Precision agriculture; Support vector machine; Weed identification

Indexed keywords

AGRICULTURE; CLASSIFICATION (OF INFORMATION); CULTIVATION; DECISION MAKING; FEATURE EXTRACTION; HERBICIDES; IMAGE PROCESSING; PLANTS (BOTANY); SUPPORT VECTOR MACHINES; WEED CONTROL;

EID: 85006750271     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2987386.2987433     Document Type: Conference Paper
Times cited : (14)

References (24)
  • 1
  • 4
    • 0042573734 scopus 로고    scopus 로고
    • Segmentation of row crop plants from weeds using colour and morphology
    • Onyango, C. M., and Marchant, J. A. 2003. Segmentation of row crop plants from weeds using colour and morphology. Computers and electronics in agriculture. 39, 3, 141-155.
    • (2003) Computers and Electronics in Agriculture , vol.39 , Issue.3 , pp. 141-155
    • Onyango, C.M.1    Marchant, J.A.2
  • 6
    • 0037327012 scopus 로고    scopus 로고
    • Determination of crop rows by image analysis without segmentation
    • Søgaard, H. T., and Olsen, H. J. 2003. Determination of crop rows by image analysis without segmentation. Computers and electronics in agriculture. 38, 2, 141-158.
    • (2003) Computers and Electronics in Agriculture , vol.38 , Issue.2 , pp. 141-158
    • Søgaard, H.T.1    Olsen, H.J.2
  • 8
    • 77957894745 scopus 로고    scopus 로고
    • A computer vision approach for weeds identification through support vector machines
    • Tellaeche, A., Pajares, G., Burgos-Artizzu, X. P., and Ribeiro, A. 2011. A computer vision approach for weeds identification through Support Vector Machines. Applied Soft Computing. 11, 1, 908-915.
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 908-915
    • Tellaeche, A.1    Pajares, G.2    Burgos-Artizzu, X.P.3    Ribeiro, A.4
  • 9
    • 84870538948 scopus 로고    scopus 로고
    • The research of support vector machine in agricultural data classification
    • Springer Berlin Heidelberg
    • Shi, L., Duan, Q., Ma, X., and Weng, M. 2011. The research of support vector machine in agricultural data classification. In Computer and Computing Technologies in Agriculture V. Springer Berlin Heidelberg, 265-269.
    • (2011) Computer and Computing Technologies in Agriculture V. , pp. 265-269
    • Shi, L.1    Duan, Q.2    Ma, X.3    Weng, M.4
  • 12
    • 49349108623 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu, N. 1975. A threshold selection method from gray-level histograms. Automatica. 1, 23-27, 285-296.
    • (1975) Automatica. , vol.1 , Issue.23-27 , pp. 285-296
    • Otsu, N.1
  • 13
    • 84965030568 scopus 로고    scopus 로고
    • Morphological image analysis: Principles and applications
    • Soille, P. 2013. Morphological image analysis: principles and applications. Springer Science & Business Media.
    • (2013) Springer Science & Business Media
    • Soille, P.1
  • 15
    • 0002811038 scopus 로고    scopus 로고
    • PA-precision agriculture: Computer-vision-based weed identification under field conditions using controlled lighting
    • Hemming, J., and Rath, T. 2001. PA-precision agriculture: computer-vision-based weed identification under field conditions using controlled lighting. Journal of agricultural engineering research. 78, 3, 233-243.
    • (2001) Journal of Agricultural Engineering Research , vol.78 , Issue.3 , pp. 233-243
    • Hemming, J.1    Rath, T.2
  • 16
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. 1998. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery. 2, 2, 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 17
    • 33751357360 scopus 로고    scopus 로고
    • SVM: Support vector machine
    • University of Dortmund
    • T. Joachims. 1999. Svm: Support vector machine. SVMLight Support Vector Machine. 19, 4, University of Dortmund. Available at http://svmlight.joachims.org/.
    • (1999) SVMLight Support Vector Machine , vol.19 , pp. 4
    • Joachims, T.1
  • 18
    • 84925430748 scopus 로고    scopus 로고
    • A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks
    • September 2014
    • Haug, S., and Ostermann, J. 2014. A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. Computer Vision-ECCV 2014 Workshops. (September 2014), 105-116.
    • (2014) Computer Vision-ECCV 2014 Workshops , pp. 105-116
    • Haug, S.1    Ostermann, J.2
  • 20
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001. Random forests. Machine learning. 45, 1, 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 24
    • 85015551550 scopus 로고    scopus 로고
    • Discrimination of crop and weeds on visible and visible/near-infrared spectrums using support vector machine, artificial neural network and decision tree
    • Deng, W., Huang, Y., Zhao, C., and Wang, X. 2014. Discrimination of Crop and Weeds on Visible and Visible/Near-Infrared Spectrums Using Support Vector Machine, Artificial Neural Network and Decision Tree. Sensors & Transducers. 26, 26
    • (2014) Sensors & Transducers. , vol.26 , pp. 26
    • Deng, W.1    Huang, Y.2    Zhao, C.3    Wang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.