메뉴 건너뛰기




Volumn 2016-January, Issue , 2016, Pages 3832-3838

Learning deep intrinsic video representation by exploring temporal coherence and graph structure

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; GRAPHIC METHODS; NETWORK ARCHITECTURE; NEURAL NETWORKS; SEMANTICS;

EID: 85006171438     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (48)

References (27)
  • 1
    • 84965157495 scopus 로고    scopus 로고
    • Spectral networks and locally connected networks on graphs
    • Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on graphs. In ICLR, 2013.
    • (2013) ICLR
    • Bruna, J.1    Zaremba, W.2    Szlam, A.3    LeCun, Y.4
  • 2
    • 84889587692 scopus 로고    scopus 로고
    • Discriminative feature selection for multi-view cross-domain learning
    • Zheng Fang and Zhongfei Mark Zhang. Discriminative feature selection for multi-view cross-domain learning. In CIKM, 2013.
    • (2013) CIKM
    • Fang, Z.1    Mark Zhang, Z.2
  • 3
    • 84977613208 scopus 로고    scopus 로고
    • 3d shape retrieval using a single depth image from low-cost sensors
    • Jie Feng, Yan Wang, and Shih-Fu Chang. 3d shape retrieval using a single depth image from low-cost sensors. In WACV, 2016.
    • (2016) WACV
    • Feng, J.1    Wang, Y.2    Chang, S.3
  • 4
    • 84959230113 scopus 로고    scopus 로고
    • DevNet: A deep event network for multimedia event detection and evidence recounting
    • Chuang Gan, Naiyan Wang, Yi Yang, Dit-Yan Yeung, and Alex G Hauptmann. DevNet: A deep event network for multimedia event detection and evidence recounting. In CVPR, 2015.
    • (2015) CVPR
    • Gan, C.1    Wang, N.2    Yang, Y.3    Yeung, D.4    Hauptmann, A.G.5
  • 7
    • 0037365920 scopus 로고    scopus 로고
    • Simple-cell-like receptive fields maximize temporal coherence in natural video
    • Jarmo Hurri and Aapo Hyvärinen. Simple-cell-like receptive fields maximize temporal coherence in natural video. Neural Computation, 2003.
    • (2003) Neural Computation
    • Hurri, J.1    Hyvärinen, A.2
  • 8
    • 79959766559 scopus 로고    scopus 로고
    • Consumer video understanding: A benchmark database and an evaluation of human and machine performance
    • Yu-Gang Jiang, Guangnan Ye, Shih-Fu Chang, Daniel Ellis, and Alexander C. Loui. Consumer video understanding: A benchmark database and an evaluation of human and machine performance. In ICMR, 2011.
    • (2011) ICMR
    • Jiang, Y.1    Ye, G.2    Chang, S.3    Ellis, D.4    Loui, A.C.5
  • 9
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 10
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis
    • Quoc V Le, Will Y Zou, Serena Y Yeung, and Andrew Y Ng. Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis. In CVPR, 2011.
    • (2011) CVPR
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 12
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • S. Melacci and M. Belkin. Laplacian support vector machines trained in the primal. Journal of Machine Learning Research, 12:1149-1184, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 13
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • H. Mobahi, R. Collobert, and J.Weston. Deep learning from temporal coherence in video. In ICML, 2009.
    • (2009) ICML
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 14
    • 77949676020 scopus 로고    scopus 로고
    • Video annotation through search and graph reinforcement mining
    • Emily Moxley, Tao Mei, and Bangalore S Manjunath. Video annotation through search and graph reinforcement mining. Multimedia, IEEE Transactions on, 12(3):184-193, 2010.
    • (2010) Multimedia, IEEE Transactions on , vol.12 , Issue.3 , pp. 184-193
    • Moxley, E.1    Mei, T.2    Manjunath, B.S.3
  • 15
    • 84904538400 scopus 로고    scopus 로고
    • Click-through-based cross-view learning for image search
    • Yingwei Pan, Ting Yao, Tao Mei, Houqiang Li, Chong-Wah Ngo, and Yong Rui. Click-through-based cross-view learning for image search. In SIGIR, 2014.
    • (2014) SIGIR
    • Pan, Y.1    Yao, T.2    Mei, T.3    Li, H.4    Ngo, C.5    Rui, Y.6
  • 16
    • 84953728660 scopus 로고    scopus 로고
    • Semi-supervised hashing with semantic confidence for large scale visual search
    • Yingwei Pan, Ting Yao, Houqiang Li, Chong-Wah Ngo, and Tao Mei. Semi-supervised hashing with semantic confidence for large scale visual search. In SIGIR, 2015.
    • (2015) SIGIR
    • Pan, Y.1    Yao, T.2    Li, H.3    Ngo, C.4    Mei, T.5
  • 17
    • 84865661519 scopus 로고    scopus 로고
    • Laplacian twin support vector machine for semi-supervised classification
    • Zhiquan Qi, Yingjie Tian, and Yong Shi. Laplacian twin support vector machine for semi-supervised classification. Neural Networks, 2012.
    • (2012) Neural Networks
    • Qi, Z.1    Tian, Y.2    Shi, Y.3
  • 18
    • 84973912614 scopus 로고    scopus 로고
    • Learning temporal embeddings for complex video analysis
    • Vignesh Ramanathan, Kevin Tang, Greg Mori, and Li Fei-Fei. Learning temporal embeddings for complex video analysis. In ICCV, 2015.
    • (2015) ICCV
    • Ramanathan, V.1    Tang, K.2    Mori, G.3    Fei-Fei, L.4
  • 21
    • 84969544782 scopus 로고    scopus 로고
    • Unsupervised learning of video representations using LSTMs
    • Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video representations using LSTMs. In ICML, 2015.
    • (2015) ICML
    • Srivastava, N.1    Mansimov, E.2    Salakhutdinov, R.3
  • 22
    • 84959216176 scopus 로고    scopus 로고
    • Ranking domain-specific highlights by analyzing edited videos
    • Min Sun, Ali Farhadi, and Steve Seitz. Ranking domain-specific highlights by analyzing edited videos. In ECCV, 2014.
    • (2014) ECCV
    • Sun, M.1    Farhadi, A.2    Seitz, S.3
  • 23
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 2000.
    • (2000) Science
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 25
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Laurenz Wiskott and Terrence J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 2002.
    • (2002) Neural Computation
    • Wiskott, L.1    Sejnowski, T.J.2
  • 27
    • 84986246211 scopus 로고    scopus 로고
    • Exploiting image-trained CNN architectures for unconstrained video classification
    • Shengxin Zha, Florian Luisier, Walter Andrews, Nitish Srivastava, and Ruslan Salakhutdinov. Exploiting image-trained CNN architectures for unconstrained video classification. In BMVC, 2015.
    • (2015) BMVC
    • Zha, S.1    Luisier, F.2    Andrews, W.3    Srivastava, N.4    Salakhutdinov, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.