-
1
-
-
0028202832
-
Respiratory chains and bioenergetics of acetic acid bacteria
-
Matsushita K, Toyama H, Adachi O. 1994. Respiratory chains and bioenergetics of acetic acid bacteria. Adv. Microb. Physiol. 36:247-301. http://dx.doi.org/10.1016/S0065-2911(08)60181-2.
-
(1994)
Adv. Microb. Physiol
, vol.36
, pp. 247-301
-
-
Matsushita, K.1
Toyama, H.2
Adachi, O.3
-
2
-
-
84880870890
-
Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain welladapted to the cocoa bean fermentation ecosystem
-
Illeghems K, De Vuyst L, Weckx S. 2013. Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain welladapted to the cocoa bean fermentation ecosystem. BMC Genomics 14: 526 http://dx.doi.org/10.1186/1471-2164-14-526.
-
(2013)
BMC Genomics
, vol.14
, pp. 526
-
-
Illeghems, K.1
De Vuyst, L.2
Weckx, S.3
-
3
-
-
84999208559
-
Draft genome sequence of Acetobacter aceti strain 1023, a vinegar factory isolate
-
Hung JE, Mill CP, Clifton SW, Magrini V, Bhide K, Francois JA, Ransome AE, Fulton L, Thimmapuram J, Wilson RK, Kappock TJ. 2014 Draft genome sequence of Acetobacter aceti strain 1023, a vinegar factory isolate. Genome Announc. 2(3):e00550-14. http://dx.doi.org/10.1128/genomeA.00550-14.
-
(2014)
Genome Announc
, vol.2
, Issue.3
-
-
Hung, J.E.1
Mill, C.P.2
Clifton, S.W.3
Magrini, V.4
Bhide, K.5
Francois, J.A.6
Ransome, A.E.7
Fulton, L.8
Thimmapuram, J.9
Wilson, R.K.10
Kappock, T.J.11
-
4
-
-
58149156437
-
Biotransformation of glycerol to D-glyceric acid by Acetobacter tropicalis
-
Habe H, Fukuoka T, Kitamoto D, Sakaki K. 2009. Biotransformation of glycerol to D-glyceric acid by Acetobacter tropicalis. Appl. Microbiol. Biotechnol. 81:1033-1039. http://dx.doi.org/10.1007/s00253-008-1737-2.
-
(2009)
Appl. Microbiol. Biotechnol
, vol.81
, pp. 1033-1039
-
-
Habe, H.1
Fukuoka, T.2
Kitamoto, D.3
Sakaki, K.4
-
5
-
-
73249142571
-
Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol
-
Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Matsushita K, Sakaki K. 2009. Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Appl. Environ. Microbiol. 75:7760-7766. http://dx.doi.org/10.1128/AEM.01535-09.
-
(2009)
Appl. Environ. Microbiol
, vol.75
, pp. 7760-7766
-
-
Habe, H.1
Shimada, Y.2
Yakushi, T.3
Hattori, H.4
Ano, Y.5
Fukuoka, T.6
Kitamoto, D.7
Itagaki, M.8
Watanabe, K.9
Yanagishita, H.10
Matsushita, K.11
Sakaki, K.12
-
6
-
-
34249996700
-
Acceleration of ethanol and acetaldehyde oxidation by D-glycerate in rats
-
Eriksson CJ, Saarenmaa TP, Bykov IL, Heino PU. 2007. Acceleration of ethanol and acetaldehyde oxidation by D-glycerate in rats. Metabolism 56:895-898. http://dx.doi.org/10.1016/j.metabol.2007.01.019.
-
(2007)
Metabolism
, vol.56
, pp. 895-898
-
-
Eriksson, C.J.1
Saarenmaa, T.P.2
Bykov, I.L.3
Heino, P.U.4
-
7
-
-
84930747869
-
In vitro evaluation of glyceric acid and its glucosyl derivative, α-glucosylglyceric acid, as cell proliferation inducers and protective solutes
-
Sato S, Kitamoto D, Habe H. 2014. In vitro evaluation of glyceric acid and its glucosyl derivative, α-glucosylglyceric acid, as cell proliferation inducers and protective solutes. Biosci. Biotechnol. Biochem. 78: 1183-1186. http://dx.doi.org/10.1080/09168451.2014.885823.
-
(2014)
Biosci. Biotechnol. Biochem
, vol.78
, pp. 1183-1186
-
-
Sato, S.1
Kitamoto, D.2
Habe, H.3
-
8
-
-
84942887758
-
SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler
-
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18. http://dx.doi.org/10.1186/2047-217X-1-18.
-
(2012)
GigaScience
, vol.1
, pp. 18
-
-
Luo, R.1
Liu, B.2
Xie, Y.3
Li, Z.4
Huang, W.5
Yuan, J.6
He, G.7
Chen, Y.8
Pan, Q.9
Liu, Y.10
Tang, J.11
Wu, G.12
Zhang, H.13
Shi, Y.14
Liu, Y.15
Yu, C.16
Wang, B.17
Lu, Y.18
Han, C.19
Cheung, D.W.20
Yiu, S.M.21
Peng, S.22
Xiaoqian, Z.23
Liu, G.24
Liao, X.25
Li, Y.26
Yang, H.27
Wang, J.28
Lam, T.W.29
Wang, J.30
more..
-
9
-
-
79959919955
-
Microbial genome annotation pipeline (MiGAP) for diverse users
-
Kanagawa, Japan
-
Sugawara H, Ohyama A, Mori H, Kurokawa K. 2009. Microbial genome annotation pipeline (MiGAP) for diverse users, abstr S-001, p 1-2. 20th Int Conf Genome Informatics, Kanagawa, Japan.
-
(2009)
20th Int Conf Genome Informatics
, pp. 1-2
-
-
Sugawara, H.1
Ohyama, A.2
Mori, H.3
Kurokawa, K.4
-
10
-
-
79956216386
-
Increased number of arginine-based salt bridges contributes to the thermotolerance of thermotolerant acetic acid bacteria, Acetobacter tropicalis SKU1100
-
Matsutani M, Hirakawa H, Nishikura M, Soemphol W, Ali IA, Yakushi T, Matsushita K. 2011. Increased number of arginine-based salt bridges contributes to the thermotolerance of thermotolerant acetic acid bacteria, Acetobacter tropicalis SKU1100. Biochem. Biophys. Res. Commun. 409: 120-124. http://dx.doi.org/10.1016/j.bbrc.2011.04.126.
-
(2011)
Biochem. Biophys. Res. Commun
, vol.409
, pp. 120-124
-
-
Matsutani, M.1
Hirakawa, H.2
Nishikura, M.3
Soemphol, W.4
Ali, I.A.5
Yakushi, T.6
Matsushita, K.7
-
11
-
-
80051834586
-
Membrane-bound alcohol dehydrogenase is essential for glyceric acid production in Acetobacter tropicalis
-
Habe H, Sato S, Fukuoka T, Kitamoto D, Yakushi T, Matsushita K, Sakaki K. 2011. Membrane-bound alcohol dehydrogenase is essential for glyceric acid production in Acetobacter tropicalis. J. Oleo Sci. 60:489-494. http://dx.doi.org/10.5650/jos.60.489.
-
(2011)
J. Oleo Sci
, vol.60
, pp. 489-494
-
-
Habe, H.1
Sato, S.2
Fukuoka, T.3
Kitamoto, D.4
Yakushi, T.5
Matsushita, K.6
Sakaki, K.7
-
12
-
-
77952890162
-
Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology
-
Yakushi T, Matsushita K. 2010. Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl. Microbiol. Biotechnol. 86:1257-1265. http://dx.doi.org/10.1007/s00253-010-2529-z.
-
(2010)
Appl. Microbiol. Biotechnol
, vol.86
, pp. 1257-1265
-
-
Yakushi, T.1
Matsushita, K.2
|