-
3
-
-
84991744743
-
Using big data to understand the human condition: The Kavli HUMAN Project
-
Azmak, O., Bayer, H., Caplin, A., Chun, M., Glimcher, P., Koonin, S., & Patrinos, A. (2015). Using big data to understand the human condition: The Kavli HUMAN Project. Big Data, 3, 173-188. http://dx.doi.org/10.1089/big.2015.0012
-
(2015)
Big Data
, vol.3
, pp. 173-188
-
-
Azmak, O.1
Bayer, H.2
Caplin, A.3
Chun, M.4
Glimcher, P.5
Koonin, S.6
Patrinos, A.7
-
5
-
-
84951336171
-
Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data
-
Beaton, D., Dunlop, J., & Abdi, H. (2016). Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data. Psychological Methods, 21, 621-651.
-
(2016)
Psychological Methods
, vol.21
, pp. 621-651
-
-
Beaton, D.1
Dunlop, J.2
Abdi, H.3
-
7
-
-
85004045085
-
Theory-guided exploration with structural equation model forests
-
Brandmaier, A. M., Prindle, J. J., McArdle, J. J., & Lindenberger, U. (2016). Theory-guided exploration with structural equation model forests. Psychological Methods, 21, 566-582.
-
(2016)
Psychological Methods
, vol.21
, pp. 566-582
-
-
Brandmaier, A.M.1
Prindle, J.J.2
McArdle, J.J.3
Lindenberger, U.4
-
8
-
-
84988692252
-
Statistical learning theory for high dimensional prediction: Application to criterion-keyed scale development
-
Chapman, B. P., Weiss, A., & Duberstein, P. (2016). Statistical learning theory for high dimensional prediction: Application to criterion-keyed scale development. Psychological Methods, 21, 603-620.
-
(2016)
Psychological Methods
, vol.21
, pp. 603-620
-
-
Chapman, B.P.1
Weiss, A.2
Duberstein, P.3
-
9
-
-
85003955314
-
A practical guide to big data research in psychology
-
Chen, E. E., & Wojcik, S. P. (2016). A practical guide to big data research in psychology. Psychological Methods, 21, 458-474.
-
(2016)
Psychological Methods
, vol.21
, pp. 458-474
-
-
Chen, E.E.1
Wojcik, S.P.2
-
11
-
-
84991746002
-
Mining the quantified self: Personal knowledge discovery as a challenge for data science
-
Fawcett, T. (2015). Mining the quantified self: Personal knowledge discovery as a challenge for data science. Big Data, 3, 249-266. http://dx.doi.org/10.1089/big.2015.0049
-
(2015)
Big Data
, vol.3
, pp. 249-266
-
-
Fawcett, T.1
-
12
-
-
77953166503
-
-
Friedman, J., Hastie, T., Simon, N., & Tibshirani, R. (2016). glmnet: Lasso and elastic-net regularized generalized linear models. R package 2.0-6. Retrieved from https://cran.r-project.org/web/packages/glmnet/glmnet.pdf
-
(2016)
Glmnet: Lasso and elastic-net regularized generalized linear models. R package 2.0-6
-
-
Friedman, J.1
Hastie, T.2
Simon, N.3
Tibshirani, R.4
-
14
-
-
85004010333
-
Tweeting negative emotion: An investigation of Twitter data in the aftermath of violence on college campuses
-
Jones, N. M., Wojcik, S. P., Sweeting, J., & Silver, R. C. (2016). Tweeting negative emotion: An investigation of Twitter data in the aftermath of violence on college campuses. Psychological Methods, 21, 526-541.
-
(2016)
Psychological Methods
, vol.21
, pp. 526-541
-
-
Jones, N.M.1
Wojcik, S.P.2
Sweeting, J.3
Silver, R.C.4
-
15
-
-
85004097351
-
Gaining insights from social media language: Methodologies and challenges
-
Kern, M. L., Park, G., Eichstaedt, J. C., Schwartz, H. A., Sap, M., Smith, L. K., & Ungar, L. H. (2016). Gaining insights from social media language: Methodologies and challenges. Psychological Methods, 21, 507-525.
-
(2016)
Psychological Methods
, vol.21
, pp. 507-525
-
-
Kern, M.L.1
Park, G.2
Eichstaedt, J.C.3
Schwartz, H.A.4
Sap, M.5
Smith, L.K.6
Ungar, L.H.7
-
16
-
-
84941048061
-
Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines
-
Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., & Stillwell, D. (2015). Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist, 70, 543-56. http://dx.doi.org/10.1037/a0039210
-
(2015)
American Psychologist
, vol.70
, pp. 543-556
-
-
Kosinski, M.1
Matz, S.C.2
Gosling, S.D.3
Popov, V.4
Stillwell, D.5
-
17
-
-
85004009893
-
Mining big data to extract patterns and predict real-life outcomes
-
Kosinski, M., Wang, Y., Lakkaraju, H., & Leskovec, J. (2016). Mining big data to extract patterns and predict real-life outcomes. Psychological Methods, 21, 493-506.
-
(2016)
Psychological Methods
, vol.21
, pp. 493-506
-
-
Kosinski, M.1
Wang, Y.2
Lakkaraju, H.3
Leskovec, J.4
-
18
-
-
84969260511
-
A primer on theory-driven web scraping: Automatic extraction of big data from the Internet for use in psychological research
-
Landers, R. N., Brusso, R. C., Cavanaugh, K. J., & Collmus, A. B. (2016). A primer on theory-driven web scraping: Automatic extraction of big data from the Internet for use in psychological research. Psychological Methods, 21, 475-492.
-
(2016)
Psychological Methods
, vol.21
, pp. 475-492
-
-
Landers, R.N.1
Brusso, R.C.2
Cavanaugh, K.J.3
Collmus, A.B.4
-
19
-
-
84876494973
-
-
Boston, MA: Houghton Mifflin Harcourt
-
Matz Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Boston, MA: Houghton Mifflin Harcourt.
-
(2013)
Big data: A revolution that will transform how we live, work, and think
-
-
Matz Mayer-Schönberger, V.1
Cukier, K.2
-
22
-
-
27244462319
-
Appraising and amending theories: The strategy of Lakatosian defense and two principles that warrant it
-
Meehl, P. E. (1990). Appraising and amending theories: The strategy of Lakatosian defense and two principles that warrant it. Psychological Inquiry, 1, 108-141. http://dx.doi.org/10.1207/s15327965pli0102_1
-
(1990)
Psychological Inquiry
, vol.1
, pp. 108-141
-
-
Meehl, P.E.1
-
23
-
-
85004115628
-
Finding structure in data using multivariate tree boosting
-
Miller, P. J., Lubke, G. H., McArtor, D. B., & Bergeman, C. S. (2016). Finding structure in data using multivariate tree boosting. Psychological Methods, 21, 583-602.
-
(2016)
Psychological Methods
, vol.21
, pp. 583-602
-
-
Miller, P.J.1
Lubke, G.H.2
McArtor, D.B.3
Bergeman, C.S.4
-
24
-
-
85004125704
-
Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow
-
Stanley, C., & Byrne, M. D. (2016). Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow. Psychological Methods, 21, 542-565.
-
(2016)
Psychological Methods
, vol.21
, pp. 542-565
-
-
Stanley, C.1
Byrne, M.D.2
|