메뉴 건너뛰기




Volumn 21, Issue 4, 2016, Pages 447-457

Big data in psychology: Introduction to the special issue

Author keywords

Big data; Digital footprint; Machine learning; Social media data; Statistical learning theory

Indexed keywords

ATTITUDE; HEALTH SURVEY; HUMAN; INFORMATION PROCESSING; PRIVACY; SOCIOLOGY;

EID: 85004072438     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/met0000120     Document Type: Article
Times cited : (81)

References (24)
  • 3
    • 84991744743 scopus 로고    scopus 로고
    • Using big data to understand the human condition: The Kavli HUMAN Project
    • Azmak, O., Bayer, H., Caplin, A., Chun, M., Glimcher, P., Koonin, S., & Patrinos, A. (2015). Using big data to understand the human condition: The Kavli HUMAN Project. Big Data, 3, 173-188. http://dx.doi.org/10.1089/big.2015.0012
    • (2015) Big Data , vol.3 , pp. 173-188
    • Azmak, O.1    Bayer, H.2    Caplin, A.3    Chun, M.4    Glimcher, P.5    Koonin, S.6    Patrinos, A.7
  • 5
    • 84951336171 scopus 로고    scopus 로고
    • Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data
    • Beaton, D., Dunlop, J., & Abdi, H. (2016). Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data. Psychological Methods, 21, 621-651.
    • (2016) Psychological Methods , vol.21 , pp. 621-651
    • Beaton, D.1    Dunlop, J.2    Abdi, H.3
  • 8
    • 84988692252 scopus 로고    scopus 로고
    • Statistical learning theory for high dimensional prediction: Application to criterion-keyed scale development
    • Chapman, B. P., Weiss, A., & Duberstein, P. (2016). Statistical learning theory for high dimensional prediction: Application to criterion-keyed scale development. Psychological Methods, 21, 603-620.
    • (2016) Psychological Methods , vol.21 , pp. 603-620
    • Chapman, B.P.1    Weiss, A.2    Duberstein, P.3
  • 9
    • 85003955314 scopus 로고    scopus 로고
    • A practical guide to big data research in psychology
    • Chen, E. E., & Wojcik, S. P. (2016). A practical guide to big data research in psychology. Psychological Methods, 21, 458-474.
    • (2016) Psychological Methods , vol.21 , pp. 458-474
    • Chen, E.E.1    Wojcik, S.P.2
  • 11
    • 84991746002 scopus 로고    scopus 로고
    • Mining the quantified self: Personal knowledge discovery as a challenge for data science
    • Fawcett, T. (2015). Mining the quantified self: Personal knowledge discovery as a challenge for data science. Big Data, 3, 249-266. http://dx.doi.org/10.1089/big.2015.0049
    • (2015) Big Data , vol.3 , pp. 249-266
    • Fawcett, T.1
  • 14
    • 85004010333 scopus 로고    scopus 로고
    • Tweeting negative emotion: An investigation of Twitter data in the aftermath of violence on college campuses
    • Jones, N. M., Wojcik, S. P., Sweeting, J., & Silver, R. C. (2016). Tweeting negative emotion: An investigation of Twitter data in the aftermath of violence on college campuses. Psychological Methods, 21, 526-541.
    • (2016) Psychological Methods , vol.21 , pp. 526-541
    • Jones, N.M.1    Wojcik, S.P.2    Sweeting, J.3    Silver, R.C.4
  • 16
    • 84941048061 scopus 로고    scopus 로고
    • Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines
    • Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., & Stillwell, D. (2015). Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist, 70, 543-56. http://dx.doi.org/10.1037/a0039210
    • (2015) American Psychologist , vol.70 , pp. 543-556
    • Kosinski, M.1    Matz, S.C.2    Gosling, S.D.3    Popov, V.4    Stillwell, D.5
  • 17
    • 85004009893 scopus 로고    scopus 로고
    • Mining big data to extract patterns and predict real-life outcomes
    • Kosinski, M., Wang, Y., Lakkaraju, H., & Leskovec, J. (2016). Mining big data to extract patterns and predict real-life outcomes. Psychological Methods, 21, 493-506.
    • (2016) Psychological Methods , vol.21 , pp. 493-506
    • Kosinski, M.1    Wang, Y.2    Lakkaraju, H.3    Leskovec, J.4
  • 18
    • 84969260511 scopus 로고    scopus 로고
    • A primer on theory-driven web scraping: Automatic extraction of big data from the Internet for use in psychological research
    • Landers, R. N., Brusso, R. C., Cavanaugh, K. J., & Collmus, A. B. (2016). A primer on theory-driven web scraping: Automatic extraction of big data from the Internet for use in psychological research. Psychological Methods, 21, 475-492.
    • (2016) Psychological Methods , vol.21 , pp. 475-492
    • Landers, R.N.1    Brusso, R.C.2    Cavanaugh, K.J.3    Collmus, A.B.4
  • 22
    • 27244462319 scopus 로고
    • Appraising and amending theories: The strategy of Lakatosian defense and two principles that warrant it
    • Meehl, P. E. (1990). Appraising and amending theories: The strategy of Lakatosian defense and two principles that warrant it. Psychological Inquiry, 1, 108-141. http://dx.doi.org/10.1207/s15327965pli0102_1
    • (1990) Psychological Inquiry , vol.1 , pp. 108-141
    • Meehl, P.E.1
  • 24
    • 85004125704 scopus 로고    scopus 로고
    • Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow
    • Stanley, C., & Byrne, M. D. (2016). Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow. Psychological Methods, 21, 542-565.
    • (2016) Psychological Methods , vol.21 , pp. 542-565
    • Stanley, C.1    Byrne, M.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.