메뉴 건너뛰기




Volumn 25, Issue 6, 2016, Pages 2641-2652

Using a geographically weighted regression model to explore the influencing factors of CO2 emissions from energy consumption in the industrial sector

Author keywords

CO2 emissions; Energy consumption; Geographically weighted regression; Industrial sector; Influencing factors

Indexed keywords


EID: 85002050789     PISSN: 12301485     EISSN: None     Source Type: Journal    
DOI: 10.15244/pjoes/64142     Document Type: Article
Times cited : (12)

References (27)
  • 1
    • 37349132380 scopus 로고    scopus 로고
    • Energy consumption and economic growth in Asian economies: A more comprehensive analysis using panel data
    • LEE C.C., CHANG C.P. Energy consumption and economic growth in Asian economies: A more comprehensive analysis using panel data. Resource and Energy Economics, 30 (1), 50, 2008.
    • (2008) Resource and Energy Economics , vol.30 , Issue.1 , pp. 50
    • Lee, C.C.1    Chang, C.P.2
  • 2
    • 77953151242 scopus 로고    scopus 로고
    • Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method
    • ZHAO M., TAN L.R., ZHANG W.G., JI M.H., LIU Y., YU L.Z. Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy, 35, 2505, 2010.
    • (2010) Energy , vol.35 , pp. 2505
    • Zhao, M.1    Tan, L.R.2    Zhang, W.G.3    Ji, M.H.4    Liu, Y.5    Yu, L.Z.6
  • 4
    • 78650204811 scopus 로고    scopus 로고
    • 2 emissions, energy consumption and economic growth in Turkey
    • 2 emissions, energy consumption and economic growth in Turkey. Renew Sustain Energy Rev, 14 (9), 3220, 2010.
    • (2010) Renew Sustain Energy Rev , vol.14 , Issue.9 , pp. 3220
    • Ozturk, I.1    Acaravci, A.2
  • 6
    • 0345531004 scopus 로고    scopus 로고
    • STIRPAT, IPAT and IMPACT: Analytic tools for unpacking the driving forces of environmental impacts
    • YORK R., ROSA E.A., DIETA T. STIRPAT, IPAT and IMPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46, 351, 2003.
    • (2003) Ecological Economics , vol.46 , pp. 351
    • York, R.1    Rosa, E.A.2    Dieta, T.3
  • 8
    • 85002441839 scopus 로고    scopus 로고
    • 2 emission in Inner Mongolia
    • 2 emission in Inner Mongolia. Technology Economies, 29, 78, 2009.
    • (2009) Technology Economies , vol.29 , pp. 78
    • Qian, G.X.1
  • 10
    • 84995363346 scopus 로고    scopus 로고
    • Using LMDI method to analyze the influencing factors of carbon emissions in China’s petrochemical industries
    • FAN T.J., LUO R.L., XIA H.Y., LI X.P. Using LMDI method to analyze the influencing factors of carbon emissions in China’s petrochemical industries. Nat Hazards, 75, 319, 2015.
    • (2015) Nat Hazards , vol.75 , pp. 319
    • Fan, T.J.1    Luo, R.L.2    Xia, H.Y.3    Li, X.P.4
  • 11
    • 84925483812 scopus 로고    scopus 로고
    • 2emissions: A case of Tianjin, China
    • 2emissions: a case of Tianjin, China. Nat Hazards, 76, 1667, 2015.
    • (2015) Nat Hazards , vol.76 , pp. 1667
    • Li, B.1    Liu, X.J.2    Li, Z.H.3
  • 12
    • 0030432956 scopus 로고    scopus 로고
    • Geographically weighted regression: A method for exploring spatial nonstationarity
    • BRUNSDON C., FOTHERINGHAM A.S., CHARLTON M. Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28, 281, 1996.
    • (1996) Geographical Analysis , vol.28 , pp. 281
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.3
  • 14
    • 21344459257 scopus 로고    scopus 로고
    • Spatial residual analysis of six modeling techniques
    • ZHANG L., GOVE J.H., HEATH L.S. Spatial residual analysis of six modeling techniques. Ecological Modeling, 186, 154, 2005.
    • (2005) Ecological Modeling , vol.186 , pp. 154
    • Zhang, L.1    Gove, J.H.2    Heath, L.S.3
  • 15
    • 0032434789 scopus 로고
    • Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis
    • FOTHERINGHAM A.S., BRUNSDON C., CHARLTON M. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning, 30, 1905, 1988.
    • (1988) Environment and Planning , vol.30 , pp. 1905
    • Fotheringham, A.S.1    Brunsdon, C.2    Charlton, M.3
  • 16
    • 84873934605 scopus 로고    scopus 로고
    • Spatial prediction of traffic levels in unmeasured locations: Applications of universal kriging and geographically weighted regression
    • BRENT S., KARA M., KOCKELMAN. Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression. Journal of Transport Geography, 29, 24, 2003.
    • (2003) Journal of Transport Geography , vol.29 , pp. 24
    • Brent, S.1    Kara, M.2    Kockelman3
  • 17
  • 18
  • 19
  • 20
    • 79958131174 scopus 로고    scopus 로고
    • IPCC Guidelines for National Greenhouse Gas Inventories
    • IPCC. IPCC Guidelines for National Greenhouse Gas Inventories, Energy. 2, 2006.
    • (2006) Energy. , vol.2
  • 22
    • 78149470829 scopus 로고    scopus 로고
    • Using geographically weighted regression for environmental justice analysis: Cumulative cancer risks from air toxics in Florida
    • GILBERT A., CHAKRABORTY J. Using geographically weighted regression for environmental justice analysis: Cumulative cancer risks from air toxics in Florida. Social Science Research, 40, 273, 2010.
    • (2010) Social Science Research , vol.40 , pp. 273
    • Gilbert, A.1    Chakraborty, J.2
  • 23
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the Detroit region
    • TOBLER W.R. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 34, 1970.
    • (1970) Economic Geography , vol.46 , pp. 34
    • Tobler, W.R.1
  • 24
    • 0030432956 scopus 로고    scopus 로고
    • Geographically weighted regression: A method for exploring spatial nonstationarity
    • BRUNSDON C., FOTHERINGHAM A.S. CHARLTON. M. Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28, 281, 1996.
    • (1996) Geographical Analysis , vol.28 , pp. 281
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.3
  • 25
    • 35648994302 scopus 로고    scopus 로고
    • Diagnostic tools and a remedial method for collinearity in geographically weighted regression
    • WHEELER D.C. Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning, 39, 2464, 2007.
    • (2007) Environment and Planning , vol.39 , pp. 2464
    • Wheeler, D.C.1
  • 26
    • 84867334184 scopus 로고    scopus 로고
    • Modeling the eco-cultural niche of giant chestnut trees: New insights into land use history in southern Switzerland through distribution analysis of a living heritage
    • KREBS P. Modeling the eco-cultural niche of giant chestnut trees: new insights into land use history in southern Switzerland through distribution analysis of a living heritage. Journal of Historical Geography, 38, 372, 2012.
    • (2012) Journal of Historical Geography , vol.38 , pp. 372
    • Krebs, P.1
  • 27
    • 39649083814 scopus 로고    scopus 로고
    • The geography of mortality in the Atlanta metropolitan area
    • HOLT J.B., LO C.P. The geography of mortality in the Atlanta metropolitan area. Computers, Environment and Urban Systems, 32, 149, 2008.
    • (2008) Computers, Environment and Urban Systems , vol.32 , pp. 149
    • Holt, J.B.1    Lo, C.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.