메뉴 건너뛰기




Volumn 15, Issue 3, 2015, Pages 712-736

Approximate Bayesian logistic regression via penalized likelihood by data augmentation

Author keywords

Bayesian methods; Data augmentation; Logistic models; Penalized likelihood estimation; penlogit; st0400

Indexed keywords


EID: 85000991995     PISSN: 1536867X     EISSN: 15368734     Source Type: Journal    
DOI: 10.1177/1536867x1501500306     Document Type: Article
Times cited : (40)

References (30)
  • 3
    • 84891552769 scopus 로고    scopus 로고
    • Maximum likelihood, profile likelihood, and penalized likelihood: A primer
    • Cole, S. R., H. Chu, and S. Greenland. 2014. Maximum likelihood, profile likelihood, and penalized likelihood: A primer. American Journal of Epidemiology 179: 252-260.
    • (2014) American Journal of Epidemiology , vol.179 , pp. 252-260
    • Cole, S.R.1    Chu, H.2    Greenland, S.3
  • 6
    • 0016794660 scopus 로고
    • Partial likelihood
    • Cox, D. R. 1975. Partial likelihood. Biometrika 62: 269-276.
    • (1975) Biometrika , vol.62 , pp. 269-276
    • Cox, D.R.1
  • 8
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • Firth, D. 1993. Bias reduction of maximum likelihood estimates. Biometrika 80: 27-38.
    • (1993) Biometrika , vol.80 , pp. 27-38
    • Firth, D.1
  • 9
    • 0024503860 scopus 로고
    • Modeling and variable selection in epidemiologic analysis
    • Greenland, S. 1989. Modeling and variable selection in epidemiologic analysis. American Journal of Public Health 79: 340-349.
    • (1989) American Journal of Public Health , vol.79 , pp. 340-349
    • Greenland, S.1
  • 10
    • 0033858016 scopus 로고    scopus 로고
    • When should epidemiologic regressions use random coefficients?
    • Greenland, S. 2000. When should epidemiologic regressions use random coefficients? Biometrics 56: 915-921.
    • (2000) Biometrics , vol.56 , pp. 915-921
    • Greenland, S.1
  • 11
    • 0034875204 scopus 로고    scopus 로고
    • Putting background information about relative risks into conjugate prior distributions
    • Greenland, S. 2001. Putting background information about relative risks into conjugate prior distributions. Biometrics 57: 663-670.
    • (2001) Biometrics , vol.57 , pp. 663-670
    • Greenland, S.1
  • 12
    • 0037366626 scopus 로고    scopus 로고
    • Generalized conjugate priors for Bayesian analysis of risk and survival regressions
    • Greenland, S. 2003. Generalized conjugate priors for Bayesian analysis of risk and survival regressions. Biometrics 59: 92-99.
    • (2003) Biometrics , vol.59 , pp. 92-99
    • Greenland, S.1
  • 13
    • 33645315892 scopus 로고    scopus 로고
    • Bayesian perspectives for epidemiological research: I. Foundations and basic methods
    • Greenland, S. 2006. Bayesian perspectives for epidemiological research: I. Foundations and basic methods. International Journal of Epidemiology 35: 765-775.
    • (2006) International Journal of Epidemiology , vol.35 , pp. 765-775
    • Greenland, S.1
  • 14
    • 34547529771 scopus 로고    scopus 로고
    • Prior data for non-normal priors
    • Greenland, S. 2007a. Prior data for non-normal priors. Statistics in Medicine 26: 3578-3590.
    • (2007) Statistics in Medicine , vol.26 , pp. 3578-3590
    • Greenland, S.1
  • 15
    • 34447343362 scopus 로고    scopus 로고
    • Bayesian perspectives for epidemiological research: II. Regression analysis
    • Greenland, S. 2007b. Bayesian perspectives for epidemiological research: II. Regression analysis. International Journal of Epidemiology 36: 195-202.
    • (2007) International Journal of Epidemiology , vol.36 , pp. 195-202
    • Greenland, S.1
  • 16
    • 40049100642 scopus 로고    scopus 로고
    • Invited commentary: Variable selection versus shrinkage in the control of multiple confounders (with discussion)
    • Greenland, S. 2008. Invited commentary: Variable selection versus shrinkage in the control of multiple confounders (with discussion). American Journal of Epidemiology 167: 523-531.
    • (2008) American Journal of Epidemiology , vol.167 , pp. 523-531
    • Greenland, S.1
  • 17
    • 76349126008 scopus 로고    scopus 로고
    • Relaxation penalties and priors for plausible modeling of nonidentified bias sources
    • Greenland, S. 2009. Relaxation penalties and priors for plausible modeling of nonidentified bias sources. Statistical Science 24: 195-210.
    • (2009) Statistical Science , vol.24 , pp. 195-210
    • Greenland, S.1
  • 18
    • 0035974940 scopus 로고    scopus 로고
    • Data augmentation priors for Bayesian and semi-Bayes analyses of conditional-logistic and proportional-hazards regression
    • Greenland, S., and R. Christensen. 2001. Data augmentation priors for Bayesian and semi-Bayes analyses of conditional-logistic and proportional-hazards regression. Statistics in Medicine 20: 2421-2428.
    • (2001) Statistics in Medicine , vol.20 , pp. 2421-2428
    • Greenland, S.1    Christensen, R.2
  • 20
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • Heinze, G., and M. Schemper. 2002. A solution to the problem of separation in logistic regression. Statistics in Medicine 21: 2409-2419.
    • (2002) Statistics in Medicine , vol.21 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 21
    • 0036205370 scopus 로고    scopus 로고
    • Being sceptical about meta-analyses: A Bayesian perspective on magnesium trials in myocardial infarction
    • Higgins, J. P. T., and D. J. Spiegelhalter. 2002. Being sceptical about meta-analyses: A Bayesian perspective on magnesium trials in myocardial infarction. International Journal of Epidemiology 31: 96-104.
    • (2002) International Journal of Epidemiology , vol.31 , pp. 96-104
    • Higgins, J.P.T.1    Spiegelhalter, D.J.2
  • 22
    • 11144322968 scopus 로고    scopus 로고
    • Families of distributions arising from distributions of order statistics
    • Jones, M. C. 2004. Families of distributions arising from distributions of order statistics. TEST 13: 1-43.
    • (2004) TEST , vol.13 , pp. 1-43
    • Jones, M.C.1
  • 24
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression. Journal of the Royal Statistical Society
    • Le Cessie, S., and J. C. van Houwelingen. 1992. Ridge estimators in logistic regression. Journal of the Royal Statistical Society, Series C 41: 191-201.
    • (1992) Series C , vol.41 , pp. 191-201
    • Le Cessie, S.1    van Houwelingen, J.C.2
  • 25
  • 27
    • 36849053930 scopus 로고    scopus 로고
    • Profile likelihood for estimation and confidence intervals
    • Royston, P. 2007. Profile likelihood for estimation and confidence intervals. Stata Journal 7: 376-387.
    • (2007) Stata Journal , vol.7 , pp. 376-387
    • Royston, P.1
  • 29
    • 84875595678 scopus 로고    scopus 로고
    • Bayesian regression in SAS software
    • With Erratum, International Journal of Epidemiology 43: 1667-1668
    • Sullivan, S. G., and S. Greenland. 2013. Bayesian regression in SAS software. International Journal of Epidemiology 42: 308-317. With Erratum, International Journal of Epidemiology 43: 1667-1668.
    • (2013) International Journal of Epidemiology , vol.42 , pp. 308-317
    • Sullivan, S.G.1    Greenland, S.2
  • 30
    • 84875595678 scopus 로고    scopus 로고
    • Re: Sullivan S. G., Greenland S. Bayesian regression in SAS software
    • International Journal of Epidemiology 43: 974
    • Sullivan, S. G., and S. Greenland. 2014. Re: Sullivan S. G., Greenland S. Bayesian regression in SAS software. Int J Epidemiol 2013; 42: 308-17. International Journal of Epidemiology 43: 974.
    • (2014) Int J Epidemiol 2013 , vol.42 , pp. 308-317
    • Sullivan, S.G.1    Greenland, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.