-
1
-
-
14144250911
-
Recent advances with liposomes as pharmaceutical carriers
-
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005;4:145-60.
-
(2005)
Nat. Rev. Drug Discov
, vol.4
, pp. 145-160
-
-
Torchilin, V.P.1
-
2
-
-
36849067019
-
Nanocarriers as an emerging platform for cancer therapy
-
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751-60.
-
(2007)
Nat. Nanotechnol
, vol.2
, pp. 751-760
-
-
Peer, D.1
Karp, J.M.2
Hong, S.3
Farokhzad, O.C.4
Margalit, R.5
Langer, R.6
-
4
-
-
1642362625
-
Drug Delivery Systems: Entering the Mainstream
-
Allen TM, Cullis PR. Drug Delivery Systems: Entering the Mainstream. Science. 2004;303:1818-22.
-
(2004)
Science
, vol.303
, pp. 1818-1822
-
-
Allen, T.M.1
Cullis, P.R.2
-
5
-
-
79953053224
-
Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects
-
Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev. 2011;63:161-9.
-
(2011)
Adv. Drug Deliv. Rev
, vol.63
, pp. 161-169
-
-
Maruyama, K.1
-
6
-
-
79953054576
-
The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
-
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136-51.
-
(2011)
Adv. Drug Deliv. Rev
, vol.63
, pp. 136-151
-
-
Fang, J.1
Nakamura, H.2
Maeda, H.3
-
7
-
-
79953048071
-
Tumor delivery of macromolecular drugs based on the EPR effect
-
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011;63:131-5.
-
(2011)
Adv. Drug Deliv. Rev
, vol.63
, pp. 131-135
-
-
Torchilin, V.1
-
8
-
-
84869496799
-
Macromolecular therapeutics in cancer treatment: The EPR effect and beyond
-
Maeda H. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond. J. Controlled Release. 2012;164:138-44.
-
(2012)
J. Controlled Release
, vol.164
, pp. 138-144
-
-
Maeda, H.1
-
9
-
-
84861669644
-
Doxil®-The first FDA-approved nano-drug: Lessons learned
-
Barenholz Y. Doxil®-The first FDA-approved nano-drug: Lessons learned. J. Controlled Release. 2012;160:117-34.
-
(2012)
J. Controlled Release
, vol.160
, pp. 117-134
-
-
Barenholz, Y.1
-
10
-
-
84868256944
-
Overcoming Limitations in Nanoparticle Drug Delivery: Triggered, Intravascular Release to Improve Drug Penetration into Tumors
-
Manzoor AA, Lindner LH, Landon CD, Park J-Y, Simnick AJ, Dreher MR, et al. Overcoming Limitations in Nanoparticle Drug Delivery: Triggered, Intravascular Release to Improve Drug Penetration into Tumors. Cancer Res. 2012;72:5566-75.
-
(2012)
Cancer Res
, vol.72
, pp. 5566-5575
-
-
Manzoor, A.A.1
Lindner, L.H.2
Landon, C.D.3
Park, J.-Y.4
Simnick, A.J.5
Dreher, M.R.6
-
11
-
-
84876534007
-
Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology
-
Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, et al. Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology. Cancer Res. 2013;73:2412-7.
-
(2013)
Cancer Res
, vol.73
, pp. 2412-2417
-
-
Prabhakar, U.1
Maeda, H.2
Jain, R.K.3
Sevick-Muraca, E.M.4
Zamboni, W.5
Farokhzad, O.C.6
-
13
-
-
84896699451
-
Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology
-
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014;66:2-25.
-
(2014)
Adv. Drug Deliv. Rev
, vol.66
, pp. 2-25
-
-
Bertrand, N.1
Wu, J.2
Xu, X.3
Kamaly, N.4
Farokhzad, O.C.5
-
16
-
-
0022526985
-
Targeted drug delivery
-
Freeman AI, Mayhew E. Targeted drug delivery. Cancer. 1986;58:573-83.
-
(1986)
Cancer
, vol.58
, pp. 573-583
-
-
Freeman, A.I.1
Mayhew, E.2
-
19
-
-
77649110032
-
Exceptionally High Payload of Doxorubicin in Hollow Gold Nanospheres for Near-Infrared Light-Triggered Drug Release
-
You J, Zhang G, Li C. Exceptionally High Payload of Doxorubicin in Hollow Gold Nanospheres for Near-Infrared Light-Triggered Drug Release. ACS Nano. 2010;4:1033-41.
-
(2010)
ACS Nano
, vol.4
, pp. 1033-1041
-
-
You, J.1
Zhang, G.2
Li, C.3
-
20
-
-
84911481603
-
Prospects for near-infrared technology in remotely triggered drug delivery
-
Timko BP, Kohane DS. Prospects for near-infrared technology in remotely triggered drug delivery. Expert Opin. Drug Deliv. 2014;11:1681-5.
-
(2014)
Expert Opin. Drug Deliv
, vol.11
, pp. 1681-1685
-
-
Timko, B.P.1
Kohane, D.S.2
-
21
-
-
84920741922
-
Augmented EPR effect by photo-triggered tumor vascular treatment improved therapeutic efficacy of liposomal paclitaxel in mice bearing tumors with low permeable vasculature
-
Araki T, Ogawara K, Suzuki H, Kawai R, Watanabe T, Ono T, et al. Augmented EPR effect by photo-triggered tumor vascular treatment improved therapeutic efficacy of liposomal paclitaxel in mice bearing tumors with low permeable vasculature. J. Controlled Release. 2015;200:106-14.
-
(2015)
J. Controlled Release
, vol.200
, pp. 106-114
-
-
Araki, T.1
Ogawara, K.2
Suzuki, H.3
Kawai, R.4
Watanabe, T.5
Ono, T.6
-
22
-
-
84864526832
-
Photochemical mechanisms of light-triggered release from nanocarriers
-
Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev. 2012;64:1005-20.
-
(2012)
Adv. Drug Deliv. Rev
, vol.64
, pp. 1005-1020
-
-
Fomina, N.1
Sankaranarayanan, J.2
Almutairi, A.3
-
23
-
-
84879679782
-
RGD-Modified Apoferritin Nanoparticles for Efficient Drug Delivery to Tumors
-
Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, et al. RGD-Modified Apoferritin Nanoparticles for Efficient Drug Delivery to Tumors. ACS Nano. 2013;7:4830-7.
-
(2013)
ACS Nano
, vol.7
, pp. 4830-4837
-
-
Zhen, Z.1
Tang, W.2
Chen, H.3
Lin, X.4
Todd, T.5
Wang, G.6
-
24
-
-
84921777880
-
Self-Assembled Core-Shell Nanoparticles for Combined Chemotherapy and Photodynamic Therapy of Resistant Head and Neck Cancers
-
He C, Liu D, Lin W. Self-Assembled Core-Shell Nanoparticles for Combined Chemotherapy and Photodynamic Therapy of Resistant Head and Neck Cancers. ACS Nano. 2015;9:991-1003.
-
(2015)
ACS Nano
, vol.9
, pp. 991-1003
-
-
He, C.1
Liu, D.2
Lin, W.3
-
25
-
-
84954546545
-
A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways
-
Spring BQ, Sears RB, Zheng LZ, Mai Z, Watanabe R, Sherwood ME, et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotechnol. 2016;11:378-87.
-
(2016)
Nat. Nanotechnol
, vol.11
, pp. 378-387
-
-
Spring, B.Q.1
Sears, R.B.2
Zheng, L.Z.3
Mai, Z.4
Watanabe, R.5
Sherwood, M.E.6
-
26
-
-
84912551834
-
Light-Induced Cytosolic Activation of Reduction-Sensitive Camptothecin-Loaded Polymeric Micelles for Spatiotemporally Controlled in Vivo Chemotherapy
-
Yen H-C, Cabral H, Mi P, Toh K, Matsumoto Y, Liu X, et al. Light-Induced Cytosolic Activation of Reduction-Sensitive Camptothecin-Loaded Polymeric Micelles for Spatiotemporally Controlled in Vivo Chemotherapy. ACS Nano. 2014;8:11591-602.
-
(2014)
ACS Nano
, vol.8
, pp. 11591-11602
-
-
Yen, H.-C.1
Cabral, H.2
Mi, P.3
Toh, K.4
Matsumoto, Y.5
Liu, X.6
-
29
-
-
84872415597
-
Porphyrins as theranostic agents from prehistoric to modern times
-
Zhang Y, Lovell JF. Porphyrins as theranostic agents from prehistoric to modern times. Theranostics. 2012;2:905-15.
-
(2012)
Theranostics
, vol.2
, pp. 905-915
-
-
Zhang, Y.1
Lovell, J.F.2
-
31
-
-
84898740331
-
Porphyrin-phospholipid liposomes permeabilized by near-infrared light
-
Carter KA, Shao S, Hoopes MI, Luo D, Ahsan B, Grigoryants VM, et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat. Commun. 2014; 5:3546.
-
(2014)
Nat. Commun
, vol.5
, pp. 3546
-
-
Carter, K.A.1
Shao, S.2
Hoopes, M.I.3
Luo, D.4
Ahsan, B.5
Grigoryants, V.M.6
-
32
-
-
84947796991
-
Porphyrin-phospholipid liposomes with tunable leakiness
-
Luo D, Carter KA, Razi A, Geng J, Shao S, Lin C, et al. Porphyrin-phospholipid liposomes with tunable leakiness. J. Controlled Release. 2015;220:484-94.
-
(2015)
J. Controlled Release
, vol.220
, pp. 484-494
-
-
Luo, D.1
Carter, K.A.2
Razi, A.3
Geng, J.4
Shao, S.5
Lin, C.6
-
33
-
-
84946402931
-
Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release
-
Luo D, Carter KA, Razi A, Geng J, Shao S, Giraldo D, et al. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials. 2016;75:193-202.
-
(2016)
Biomaterials
, vol.75
, pp. 193-202
-
-
Luo, D.1
Carter, K.A.2
Razi, A.3
Geng, J.4
Shao, S.5
Giraldo, D.6
-
34
-
-
79953033890
-
Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents
-
Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011;10:324-32.
-
(2011)
Nat. Mater
, vol.10
, pp. 324-332
-
-
Lovell, J.F.1
Jin, C.S.2
Huynh, E.3
Jin, H.4
Kim, C.5
Rubinstein, J.L.6
-
35
-
-
84957310073
-
Metal Chelation Modulates Phototherapeutic Properties of Mitoxantrone-Loaded Porphyrin-Phospholipid Liposomes
-
Carter KA, Wang S, Geng J, Luo D, Shao S, Lovell JF. Metal Chelation Modulates Phototherapeutic Properties of Mitoxantrone-Loaded Porphyrin-Phospholipid Liposomes. Mol. Pharm. 2016;13:420-7.
-
(2016)
Mol. Pharm
, vol.13
, pp. 420-427
-
-
Carter, K.A.1
Wang, S.2
Geng, J.3
Luo, D.4
Shao, S.5
Lovell, J.F.6
-
36
-
-
84928542094
-
Functionalization of cobalt porphyrin-phospholipid bilayers with his-tagged ligands and antigens
-
Shao S, Geng J, Ah Yi H, Gogia S, Neelamegham S, Jacobs A, et al. Functionalization of cobalt porphyrin-phospholipid bilayers with his-tagged ligands and antigens. Nat. Chem. 2015;7:438-46.
-
(2015)
Nat. Chem
, vol.7
, pp. 438-446
-
-
Shao, S.1
Geng, J.2
Ah Yi, H.3
Gogia, S.4
Neelamegham, S.5
Jacobs, A.6
-
37
-
-
84948761485
-
Quantitative imaging of light-triggered doxorubicin release
-
Kress J, Rohrbach DJ, Carter KA, Luo D, Shao S, Lele S, et al. Quantitative imaging of light-triggered doxorubicin release. Biomed. Opt. Express. 2015;6:3546-55.
-
(2015)
Biomed. Opt. Express
, vol.6
, pp. 3546-3555
-
-
Kress, J.1
Rohrbach, D.J.2
Carter, K.A.3
Luo, D.4
Shao, S.5
Lele, S.6
-
38
-
-
84924075409
-
Hexamodal Imaging with Porphyrin-Phospholipid-Coated Upconversion Nanoparticles
-
Rieffel J, Chen F, Kim J, Chen G, Shao W, Shao S, et al. Hexamodal Imaging with Porphyrin-Phospholipid-Coated Upconversion Nanoparticles. Adv. Mater. 2015;27:1785-90.
-
(2015)
Adv. Mater
, vol.27
, pp. 1785-1790
-
-
Rieffel, J.1
Chen, F.2
Kim, J.3
Chen, G.4
Shao, W.5
Shao, S.6
-
39
-
-
84966577670
-
Rapid Light-Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin-Phospholipids
-
Luo D, Li N, Carter KA, Lin C, Geng J, Shao S, et al. Rapid Light-Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin-Phospholipids. Small. 2016;12:3039-47.
-
(2016)
Small
, vol.12
, pp. 3039-3047
-
-
Luo, D.1
Li, N.2
Carter, K.A.3
Lin, C.4
Geng, J.5
Shao, S.6
-
40
-
-
84857970388
-
Enzymatic Regioselection for the Synthesis and Biodegradation of Porphysome Nanovesicles
-
Lovell JF, Jin CS, Huynh E, MacDonald TD, Cao W, Zheng G. Enzymatic Regioselection for the Synthesis and Biodegradation of Porphysome Nanovesicles. Angew. Chem. Int. Ed. 2012;51:2429-33.
-
(2012)
Angew. Chem. Int. Ed
, vol.51
, pp. 2429-2433
-
-
Lovell, J.F.1
Jin, C.S.2
Huynh, E.3
MacDonald, T.D.4
Cao, W.5
Zheng, G.6
-
41
-
-
33749073801
-
Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient
-
Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim. Biophys. Acta BBA-Biomembr. 2006;1758:1633-40.
-
(2006)
Biochim. Biophys. Acta BBA-Biomembr
, vol.1758
, pp. 1633-1640
-
-
Fritze, A.1
Hens, F.2
Kimpfler, A.3
Schubert, R.4
Peschka-Süss, R.5
-
42
-
-
0026453662
-
Gelation of liposome interior A novel method for drug encapsulation
-
Lasic DD, Frederik PM, Stuart MCA, Barenholz Y, McIntosh TJ. Gelation of liposome interior A novel method for drug encapsulation. FEBS Lett. 1992;312:255-8.
-
(1992)
FEBS Lett
, vol.312
, pp. 255-258
-
-
Lasic, D.D.1
Frederik, P.M.2
Stuart, M.C.A.3
Barenholz, Y.4
McIntosh, T.J.5
-
43
-
-
84901218029
-
Therapeutic Efficacy of Combining PEGylated Liposomal Doxorubicin and Radiofrequency (RF) Ablation: Comparison between Slow-Drug-Releasing, Non-Thermosensitive and Fast-Drug-Releasing, Thermosensitive Nano-Liposomes
-
Andriyanov AV, Koren E, Barenholz Y, Goldberg SN. Therapeutic Efficacy of Combining PEGylated Liposomal Doxorubicin and Radiofrequency (RF) Ablation: Comparison between Slow-Drug-Releasing, Non-Thermosensitive and Fast-Drug-Releasing, Thermosensitive Nano-Liposomes. PLoS ONE. 2014;9:e92555.
-
(2014)
PLoS ONE
, vol.9
-
-
Andriyanov, A.V.1
Koren, E.2
Barenholz, Y.3
Goldberg, S.N.4
-
44
-
-
0038705953
-
Effect of Composition on the stability of liposomal irinotecan prepared by a pH gradient method
-
Chou T-H, Chen S-C, Chu I-M. Effect of Composition on the stability of liposomal irinotecan prepared by a pH gradient method. J. Biosci. Bioeng. 2003;95:405-8.
-
(2003)
J. Biosci. Bioeng
, vol.95
, pp. 405-408
-
-
Chou, T.-H.1
Chen, S.-C.2
Chu, I.-M.3
-
45
-
-
5144225469
-
Liposomal Irinotecan Formulation Development and Therapeutic Assessment in Murine Xenograft Models of Colorectal Cancer
-
Messerer CL, Ramsay EC, Waterhouse D, Ng R, Simms E-M, Harasym N, et al. Liposomal Irinotecan Formulation Development and Therapeutic Assessment in Murine Xenograft Models of Colorectal Cancer. Clin. Cancer Res. 2004;10:6638-49.
-
(2004)
Clin. Cancer Res
, vol.10
, pp. 6638-6649
-
-
Messerer, C.L.1
Ramsay, E.C.2
Waterhouse, D.3
Ng, R.4
Simms, E.-M.5
Harasym, N.6
-
46
-
-
33645047575
-
Development of a Highly Active Nanoliposomal Irinotecan Using a Novel Intraliposomal Stabilization Strategy
-
Drummond DC, Noble CO, Guo Z, Hong K, Park JW, Kirpotin DB. Development of a Highly Active Nanoliposomal Irinotecan Using a Novel Intraliposomal Stabilization Strategy. Cancer Res. 2006;66:3271-7.
-
(2006)
Cancer Res
, vol.66
, pp. 3271-3277
-
-
Drummond, D.C.1
Noble, C.O.2
Guo, Z.3
Hong, K.4
Park, J.W.5
Kirpotin, D.B.6
-
47
-
-
0034892379
-
Clinical Pharmacokinetics and Metabolism of Irinotecan (CPT-11)
-
Mathijssen RHJ, Alphen RJ van, Verweij J, Loos WJ, Nooter K, Stoter G, et al. Clinical Pharmacokinetics and Metabolism of Irinotecan (CPT-11). Clin. Cancer Res. 2001;7:2182-94.
-
(2001)
Clin. Cancer Res
, vol.7
, pp. 2182-2194
-
-
Mathijssen, R.H.J.1
Alphen, R.J.2
Verweij, J.3
Loos, W.J.4
Nooter, K.5
Stoter, G.6
-
48
-
-
84856638259
-
Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy
-
Chang H-I, Yeh M-K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine. 2012;7:49-60.
-
(2012)
Int. J. Nanomedicine
, vol.7
, pp. 49-60
-
-
Chang, H.-I.1
Yeh, M.-K.2
-
49
-
-
33845368651
-
Transition Metal-Mediated Liposomal Encapsulation of Irinotecan (CPT-11) Stabilizes the Drug in the Therapeutically Active Lactone Conformation
-
Ramsay E, Alnajim J, Anantha M, Taggar A, Thomas A, Edwards K, et al. Transition Metal-Mediated Liposomal Encapsulation of Irinotecan (CPT-11) Stabilizes the Drug in the Therapeutically Active Lactone Conformation. Pharm. Res. 2006;23:2799-808.
-
(2006)
Pharm. Res
, vol.23
, pp. 2799-2808
-
-
Ramsay, E.1
Alnajim, J.2
Anantha, M.3
Taggar, A.4
Thomas, A.5
Edwards, K.6
-
50
-
-
84922779125
-
Active loading liposomal irinotecan hydrochloride: Preparation, in vitro and in vivo evaluation
-
Wei H, Song J, Li H, Li Y, Zhu S, Zhou X, et al. Active loading liposomal irinotecan hydrochloride: Preparation, in vitro and in vivo evaluation. Asian J. Pharm. Sci. 2013;8:303-11.
-
(2013)
Asian J. Pharm. Sci
, vol.8
, pp. 303-311
-
-
Wei, H.1
Song, J.2
Li, H.3
Li, Y.4
Zhu, S.5
Zhou, X.6
-
51
-
-
84880848354
-
Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
-
Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods. 2013;10:584-90.
-
(2013)
Nat. Methods
, vol.10
, pp. 584-590
-
-
Li, X.1
Mooney, P.2
Zheng, S.3
Booth, C.R.4
Braunfeld, M.B.5
Gubbens, S.6
-
52
-
-
0028855939
-
Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models
-
Webb MS, Harasym TO, Masin D, Bally MB, Mayer LD. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br. J. Cancer. 1995;72:896-904.
-
(1995)
Br. J. Cancer
, vol.72
, pp. 896-904
-
-
Webb, M.S.1
Harasym, T.O.2
Masin, D.3
Bally, M.B.4
Mayer, L.D.5
-
53
-
-
0034234238
-
Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models
-
Tardi P, Choice E, Masin D, Redelmeier T, Bally M, Madden TD. Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models. Cancer Res. 2000;60:3389-93.
-
(2000)
Cancer Res
, vol.60
, pp. 3389-3393
-
-
Tardi, P.1
Choice, E.2
Masin, D.3
Redelmeier, T.4
Bally, M.5
Madden, T.D.6
-
54
-
-
0346995287
-
Photodynamic therapy: a means to enhanced drug delivery to tumors
-
Snyder JW, Greco WR, Bellnier DA, Vaughan L, Henderson BW. Photodynamic therapy: a means to enhanced drug delivery to tumors. Cancer Res. 2003;63:8126-31.
-
(2003)
Cancer Res
, vol.63
, pp. 8126-8131
-
-
Snyder, J.W.1
Greco, W.R.2
Bellnier, D.A.3
Vaughan, L.4
Henderson, B.W.5
-
55
-
-
84872838282
-
Markedly Enhanced Permeability and Retention Effects Induced by Photo-immunotherapy of Tumors
-
Sano K, Nakajima T, Choyke PL, Kobayashi H. Markedly Enhanced Permeability and Retention Effects Induced by Photo-immunotherapy of Tumors. ACS Nano. 2013;7:717-24.
-
(2013)
ACS Nano
, vol.7
, pp. 717-724
-
-
Sano, K.1
Nakajima, T.2
Choyke, P.L.3
Kobayashi, H.4
-
56
-
-
84903462809
-
Tumor Vasculature Targeted Photodynamic Therapy for Enhanced Delivery of Nanoparticles
-
Zhen Z, Tang W, Chuang Y-J, Todd T, Zhang W, Lin X, et al. Tumor Vasculature Targeted Photodynamic Therapy for Enhanced Delivery of Nanoparticles. ACS Nano. 2014;8:6004-13.
-
(2014)
ACS Nano
, vol.8
, pp. 6004-6013
-
-
Zhen, Z.1
Tang, W.2
Chuang, Y.-J.3
Todd, T.4
Zhang, W.5
Lin, X.6
-
57
-
-
0036479901
-
Sphingomyelin enhances chemotherapy efficacy and increases apoptosis in human colonic tumor xenografts
-
Modrak DE, Rodriguez MD, Goldenberg DM, Lew W, Blumenthal RD. Sphingomyelin enhances chemotherapy efficacy and increases apoptosis in human colonic tumor xenografts. Int. J. Oncol. 2002;20:379-84.
-
(2002)
Int. J. Oncol
, vol.20
, pp. 379-384
-
-
Modrak, D.E.1
Rodriguez, M.D.2
Goldenberg, D.M.3
Lew, W.4
Blumenthal, R.D.5
-
58
-
-
38449115418
-
Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts
-
Krauze MT, Noble CO, Kawaguchi T, Drummond D, Kirpotin DB, Yamashita Y, et al. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts. Neuro-Oncol. 2007;9:393-403.
-
(2007)
Neuro-Oncol
, vol.9
, pp. 393-403
-
-
Krauze, M.T.1
Noble, C.O.2
Kawaguchi, T.3
Drummond, D.4
Kirpotin, D.B.5
Yamashita, Y.6
-
59
-
-
67349152765
-
Novel irinotecan-loaded liposome using phytic acid with high therapeutic efficacy for colon tumors
-
Hattori Y, Shi L, Ding W, Koga K, Kawano K, Hakoshima M, et al. Novel irinotecan-loaded liposome using phytic acid with high therapeutic efficacy for colon tumors. J. Controlled Release. 2009;136:30-7.
-
(2009)
J. Controlled Release
, vol.136
, pp. 30-37
-
-
Hattori, Y.1
Shi, L.2
Ding, W.3
Koga, K.4
Kawano, K.5
Hakoshima, M.6
|