-
1
-
-
84875404201
-
Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation
-
[1] Zhao, F., Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation. Neurocomputing 106 (2013), 115–125.
-
(2013)
Neurocomputing
, vol.106
, pp. 115-125
-
-
Zhao, F.1
-
2
-
-
33845987065
-
An improved ant colony algorithm for fuzzy clustering in image segmentation
-
[2] Han, Y., Shi, P., An improved ant colony algorithm for fuzzy clustering in image segmentation. Neurocomputing 70 (2007), 665–671.
-
(2007)
Neurocomputing
, vol.70
, pp. 665-671
-
-
Han, Y.1
Shi, P.2
-
3
-
-
84922745189
-
A multiobjective spatial fuzzy clustering algorithm for image segmentation
-
[3] Zhao, F., Liu, H., Fan, J., A multiobjective spatial fuzzy clustering algorithm for image segmentation. Appl. Soft Comput. 30 (2015), 48–57.
-
(2015)
Appl. Soft Comput.
, vol.30
, pp. 48-57
-
-
Zhao, F.1
Liu, H.2
Fan, J.3
-
4
-
-
84907314415
-
A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches
-
[4] Agrawal, S., Panda, R., Dora, L., A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches. Appl. Soft Comput. 24 (2014), 522–533.
-
(2014)
Appl. Soft Comput.
, vol.24
, pp. 522-533
-
-
Agrawal, S.1
Panda, R.2
Dora, L.3
-
5
-
-
84948798880
-
Robust fuzzy clustering using nonsymmetric student's t finite mixture model for MR image segmentation
-
[5] Zhu, H., Pan, X., Robust fuzzy clustering using nonsymmetric student's t finite mixture model for MR image segmentation. Neurocomputing 175 (2016), 500–514.
-
(2016)
Neurocomputing
, vol.175
, pp. 500-514
-
-
Zhu, H.1
Pan, X.2
-
6
-
-
84910624398
-
A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering
-
[6] Askari, S., Montazerin, N., A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering. Expert Syst. Appl. 42 (2015), 2121–2135.
-
(2015)
Expert Syst. Appl.
, vol.42
, pp. 2121-2135
-
-
Askari, S.1
Montazerin, N.2
-
7
-
-
84936867444
-
A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables
-
[7] Askari, S., Montazerin, N., Fazel Zarandi, M.H., A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables. Appl. Soft Comput. 35 (2015), 151–160.
-
(2015)
Appl. Soft Comput.
, vol.35
, pp. 151-160
-
-
Askari, S.1
Montazerin, N.2
Fazel Zarandi, M.H.3
-
8
-
-
77952550094
-
Automatic clustering-based identification of autoregressive fuzzy inference models for time series
-
[8] Pouzols, F.M., Barros, A.B., Automatic clustering-based identification of autoregressive fuzzy inference models for time series. Neurocomputing 73 (2010), 1937–1949.
-
(2010)
Neurocomputing
, vol.73
, pp. 1937-1949
-
-
Pouzols, F.M.1
Barros, A.B.2
-
9
-
-
84882912099
-
Color segmentation by fuzzy co-clustering of chrominance color features
-
[9] Hanmandlu, M., Verma, O.P., Susan, S., Madasu, V.K., Color segmentation by fuzzy co-clustering of chrominance color features. Neurocomputing 120 (2013), 235–249.
-
(2013)
Neurocomputing
, vol.120
, pp. 235-249
-
-
Hanmandlu, M.1
Verma, O.P.2
Susan, S.3
Madasu, V.K.4
-
10
-
-
77957925437
-
Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process
-
[10] Eslamloueyan, R., Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process. Appl. Soft Comput. 11 (2011), 1407–1415.
-
(2011)
Appl. Soft Comput.
, vol.11
, pp. 1407-1415
-
-
Eslamloueyan, R.1
-
11
-
-
84891594013
-
Fuzzy clustering with biological knowledge for gene selection
-
[11] Ghosh, S., Mitra, S., Dattagupta, R., Fuzzy clustering with biological knowledge for gene selection. Appl. Soft Comput. 16 (2014), 102–111.
-
(2014)
Appl. Soft Comput.
, vol.16
, pp. 102-111
-
-
Ghosh, S.1
Mitra, S.2
Dattagupta, R.3
-
12
-
-
0021583718
-
FCM: the fuzzy c-means clustering algorithm
-
[12] Bezdek, J.C., Ehrlich, R., Full, W., FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10:2–3 (1984), 191–203.
-
(1984)
Comput. Geosci.
, vol.10
, Issue.2-3
, pp. 191-203
-
-
Bezdek, J.C.1
Ehrlich, R.2
Full, W.3
-
13
-
-
0018918224
-
A convergence theorem for the fuzzy ISODATA clustering algorithms
-
[13] Bezdek, J.C., A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2:1 (1980), 1–8.
-
(1980)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.2
, Issue.1
, pp. 1-8
-
-
Bezdek, J.C.1
-
14
-
-
27644485640
-
A new convergence proof of fuzzy c-means
-
[14] Groll, L., Jakel, J., A new convergence proof of fuzzy c-means. IEEE Trans. Fuzzy Syst. 13 (2005), 717–720.
-
(2005)
IEEE Trans. Fuzzy Syst.
, vol.13
, pp. 717-720
-
-
Groll, L.1
Jakel, J.2
-
15
-
-
0022927455
-
Local convergence of the fuzzy c-means algorithms
-
[15] Hathaway, R.J., Bezdek, J.C., Local convergence of the fuzzy c-means algorithms. Pattern Recognit. 19:6 (1986), 477–480.
-
(1986)
Pattern Recognit.
, vol.19
, Issue.6
, pp. 477-480
-
-
Hathaway, R.J.1
Bezdek, J.C.2
-
16
-
-
0028543130
-
Optimality tests for the fuzzy c-means algorithm
-
[16] Wei, W., Mendel, J.M., Optimality tests for the fuzzy c-means algorithm. Pattern Recognit. 27:11 (1994), 1567–1573.
-
(1994)
Pattern Recognit.
, vol.27
, Issue.11
, pp. 1567-1573
-
-
Wei, W.1
Mendel, J.M.2
-
17
-
-
0024192973
-
Optimality tests for fixed points of the fuzzy c-means algorithm
-
[17] Kim, T., Bezdek, J.C., Hathaway, R.J., Optimality tests for fixed points of the fuzzy c-means algorithm. Pattern Recognit. 21:6 (1988), 651–663.
-
(1988)
Pattern Recognit.
, vol.21
, Issue.6
, pp. 651-663
-
-
Kim, T.1
Bezdek, J.C.2
Hathaway, R.J.3
-
18
-
-
84901014957
-
Generalization rules for the suppressed fuzzy c-means clustering algorithm
-
[18] Szilagyi, L., Szilagyi, S.M., Generalization rules for the suppressed fuzzy c-means clustering algorithm. Neurocomputing 139 (2014), 298–309.
-
(2014)
Neurocomputing
, vol.139
, pp. 298-309
-
-
Szilagyi, L.1
Szilagyi, S.M.2
-
19
-
-
0028667331
-
New algorithms for solving the fuzzy clustering problem
-
[19] Kamel, M.S., Selim, S.Z., New algorithms for solving the fuzzy clustering problem. Pattern Recognit. 27:3 (1994), 421–428.
-
(1994)
Pattern Recognit.
, vol.27
, Issue.3
, pp. 421-428
-
-
Kamel, M.S.1
Selim, S.Z.2
-
20
-
-
84887610180
-
Online fuzzy medoid based clustering algorithms
-
[20] Labroche, N., Online fuzzy medoid based clustering algorithms. Neurocomputing 126 (2014), 141–150.
-
(2014)
Neurocomputing
, vol.126
, pp. 141-150
-
-
Labroche, N.1
-
21
-
-
84930273919
-
A multi-view relational fuzzy c-medoid vectors clustering algorithm
-
[21] de, F., de Carvalho, A.T., de Melo, F.M., Lechevallier, Y., A multi-view relational fuzzy c-medoid vectors clustering algorithm. Neurocomputing 163 (2015), 115–123.
-
(2015)
Neurocomputing
, vol.163
, pp. 115-123
-
-
de, F.1
de Carvalho, A.T.2
de Melo, F.M.3
Lechevallier, Y.4
-
22
-
-
0027658607
-
A global algorithm for the fuzzy clustering problem
-
[22] Al-Sultan, K.S., Selim, S.Z., A global algorithm for the fuzzy clustering problem. Pattern Recognit. 26:9 (1993), 1357–1361.
-
(1993)
Pattern Recognit.
, vol.26
, Issue.9
, pp. 1357-1361
-
-
Al-Sultan, K.S.1
Selim, S.Z.2
-
23
-
-
84924075165
-
A sparse fuzzy c-means algorithm based on sparse clustering framework
-
[23] Qiu, X., Qiu, Y., Feng, G., Li, P., A sparse fuzzy c-means algorithm based on sparse clustering framework. Neurocomputing 157 (2015), 290–295.
-
(2015)
Neurocomputing
, vol.157
, pp. 290-295
-
-
Qiu, X.1
Qiu, Y.2
Feng, G.3
Li, P.4
-
24
-
-
35348845206
-
A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis
-
[24] Yu, J., Yang, M.-S., A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis. IEEE Trans. Fuzzy Syst. 15:5 (2007), 904–915.
-
(2007)
IEEE Trans. Fuzzy Syst.
, vol.15
, Issue.5
, pp. 904-915
-
-
Yu, J.1
Yang, M.-S.2
-
25
-
-
84949685813
-
Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm
-
[25] Ding, Y., Fu, X., Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing 188 (2016), 233–238.
-
(2016)
Neurocomputing
, vol.188
, pp. 233-238
-
-
Ding, Y.1
Fu, X.2
-
26
-
-
84949681137
-
Multivariate fuzzy C-Means algorithms with weighting
-
[26] Pimentel, B.A., de Souza, R.M.C.R., Multivariate fuzzy C-Means algorithms with weighting. Neurocomputing 174 (2016), 946–965.
-
(2016)
Neurocomputing
, vol.174
, pp. 946-965
-
-
Pimentel, B.A.1
de Souza, R.M.C.R.2
-
27
-
-
80052781450
-
Analysis of parameters elections for fuzzy c-means
-
[27] Wu, K.-L., Analysis of parameters elections for fuzzy c-means. Pattern Recognit. 45 (2012), 407–415.
-
(2012)
Pattern Recognit.
, vol.45
, pp. 407-415
-
-
Wu, K.-L.1
-
28
-
-
0036779072
-
Alternative c-means clustering algorithms
-
[28] Wu, K.-L., Yang, M.-S., Alternative c-means clustering algorithms. Pattern Recognit. 35 (2002), 2267–2278.
-
(2002)
Pattern Recognit.
, vol.35
, pp. 2267-2278
-
-
Wu, K.-L.1
Yang, M.-S.2
-
29
-
-
84893653479
-
A size-insensitive integrity-based fuzzy c-means method for data clustering
-
[29] Lin, P.-L., Huang, P.-W., Kuo, C.H., Lai, Y.H., A size-insensitive integrity-based fuzzy c-means method for data clustering. Pattern Recognit. 47 (2014), 2042–2056.
-
(2014)
Pattern Recognit.
, vol.47
, pp. 2042-2056
-
-
Lin, P.-L.1
Huang, P.-W.2
Kuo, C.H.3
Lai, Y.H.4
-
30
-
-
84867612677
-
Fuzzy c-means algorithms for very large data
-
[30] Havens, T., Bezdek, J.C., Leckie, C., Hall, L., Palaniswami, M., Fuzzy c-means algorithms for very large data. IEEE Trans. Fuzzy Syst. 20:6 (2012), 1130–1146.
-
(2012)
IEEE Trans. Fuzzy Syst.
, vol.20
, Issue.6
, pp. 1130-1146
-
-
Havens, T.1
Bezdek, J.C.2
Leckie, C.3
Hall, L.4
Palaniswami, M.5
-
31
-
-
0029245943
-
Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation-Part I
-
[31] Krisnapuram, R., Frigui, H., Nasroui, O., Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation-Part I. IEEE Trans. Fuzzy Syst. 3:1 (1995), 29–43.
-
(1995)
IEEE Trans. Fuzzy Syst.
, vol.3
, Issue.1
, pp. 29-43
-
-
Krisnapuram, R.1
Frigui, H.2
Nasroui, O.3
-
32
-
-
0029246295
-
Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation-Part II
-
[32] Krisnapuram, R., Frigui, H., Nasroui, O., Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation-Part II. IEEE Trans. Fuzzy Syst. 3:1 (1995), 44–60.
-
(1995)
IEEE Trans. Fuzzy Syst.
, vol.3
, Issue.1
, pp. 44-60
-
-
Krisnapuram, R.1
Frigui, H.2
Nasroui, O.3
-
33
-
-
84925186551
-
Collaborative fuzzy clustering from multiple weighted views
-
[33] Jiang, Y., Chung, F.-L., Wang, S., Deng, Z., Wang, J., Qian, P., Collaborative fuzzy clustering from multiple weighted views. IEEE Trans. Cybern. 45:4 (2015), 688–701.
-
(2015)
IEEE Trans. Cybern.
, vol.45
, Issue.4
, pp. 688-701
-
-
Jiang, Y.1
Chung, F.-L.2
Wang, S.3
Deng, Z.4
Wang, J.5
Qian, P.6
-
34
-
-
0030703348
-
A mixed c-means clustering model
-
[34] Pal, N.R., Pal, K., Bezdek, J.C., A mixed c-means clustering model. IEEE Int. Conf. Fuzzy Syst., 1997, 11–21.
-
(1997)
IEEE Int. Conf. Fuzzy Syst.
, pp. 11-21
-
-
Pal, N.R.1
Pal, K.2
Bezdek, J.C.3
-
35
-
-
0027595430
-
A possibilistic approach to clustering
-
[35] Krishnapuram, R., Keller, J., A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1:2 (1993), 98–110.
-
(1993)
IEEE Trans. Fuzzy Syst.
, vol.1
, Issue.2
, pp. 98-110
-
-
Krishnapuram, R.1
Keller, J.2
-
36
-
-
0030214781
-
The possibilistic c-Means algorithm: insights and recommendations
-
[36] Krishnapuram, R., Keller, J., The possibilistic c-Means algorithm: insights and recommendations. IEEE Trans. Fuzzy Syst. 4:3 (1996), 385–393.
-
(1996)
IEEE Trans. Fuzzy Syst.
, vol.4
, Issue.3
, pp. 385-393
-
-
Krishnapuram, R.1
Keller, J.2
-
37
-
-
77957791609
-
Comparing fuzzy, probabilistic, and possibilistic partitions
-
[37] Anderson, D., Bezdek, J.C., Popescu, M., Keller, J., Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Trans. Fuzzy Syst. 18:5 (2010), 906–917.
-
(2010)
IEEE Trans. Fuzzy Syst.
, vol.18
, Issue.5
, pp. 906-917
-
-
Anderson, D.1
Bezdek, J.C.2
Popescu, M.3
Keller, J.4
-
38
-
-
26844532803
-
c-Means clustering algorithm
-
[38] Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C., Possibilistic Fuzzy, A., c-Means clustering algorithm. IEEE Trans. Fuzzy Syst. 13:4 (2005), 517–530.
-
(2005)
IEEE Trans. Fuzzy Syst.
, vol.13
, Issue.4
, pp. 517-530
-
-
Pal, N.R.1
Pal, K.2
Keller, J.M.3
Bezdek, J.C.4
Possibilistic Fuzzy, A.5
-
39
-
-
0029226148
-
A maximum-entropy approach to fuzzy clustering
-
[39] Li, R.P., Mukaidono, M., A maximum-entropy approach to fuzzy clustering. IEEE Int. Conf. Fuzzy Syst. 4 (1995), 2227–2232.
-
(1995)
IEEE Int. Conf. Fuzzy Syst.
, vol.4
, pp. 2227-2232
-
-
Li, R.P.1
Mukaidono, M.2
-
40
-
-
0000309136
-
Gaussian clustering method based on maximum-fuzzy-entropy interpretation
-
[40] Li, R.P., Mukaidono, M., Gaussian clustering method based on maximum-fuzzy-entropy interpretation. Fuzzy Sets Syst. 102 (1999), 253–258.
-
(1999)
Fuzzy Sets Syst.
, vol.102
, pp. 253-258
-
-
Li, R.P.1
Mukaidono, M.2
-
41
-
-
84959387487
-
A survey on soft subspace clustering
-
[41] Deng, Z., Choi, K.-S., Jiang, Y., Wang, J., Wang, S., A survey on soft subspace clustering. Inf. Sci. 348 (2016), 84–106.
-
(2016)
Inf. Sci.
, vol.348
, pp. 84-106
-
-
Deng, Z.1
Choi, K.-S.2
Jiang, Y.3
Wang, J.4
Wang, S.5
-
42
-
-
38949102340
-
A convergence theorem for the fuzzy subspace clustering (FSC) algorithm
-
[42] Gan, G.J., Wu, J.H., A convergence theorem for the fuzzy subspace clustering (FSC) algorithm. Pattern Recognit. 41 (2008), 1939–1947.
-
(2008)
Pattern Recognit.
, vol.41
, pp. 1939-1947
-
-
Gan, G.J.1
Wu, J.H.2
-
43
-
-
84876729548
-
Rough clustering using generalized fuzzy clustering algorithm
-
[43] Lai, J.Z.C., Juan, E.Y.T., Lai, F.J.C., Rough clustering using generalized fuzzy clustering algorithm. Pattern Recognit. 46 (2013), 2538–2547.
-
(2013)
Pattern Recognit.
, vol.46
, pp. 2538-2547
-
-
Lai, J.Z.C.1
Juan, E.Y.T.2
Lai, F.J.C.3
-
44
-
-
84884906380
-
A validity index for fuzzy and possibilistic c-means algorithm
-
[44] Zhang, C., Zhou, Y., Martin, T., A validity index for fuzzy and possibilistic c-means algorithm. Proc. IPMU'08, 2008, 877–882.
-
(2008)
Proc. IPMU'08
, pp. 877-882
-
-
Zhang, C.1
Zhou, Y.2
Martin, T.3
|