메뉴 건너뛰기




Volumn 219, Issue , 2017, Pages 186-202

Generalized entropy based possibilistic fuzzy C-Means for clustering noisy data and its convergence proof

Author keywords

Convergence proof; Entropy C Means; Fuzzy C Means; Fuzzy clustering; Noise; Noisy data; Possibilistic C Means

Indexed keywords

CLUSTERING ALGORITHMS; COPYING; ENTROPY; FUZZY SYSTEMS;

EID: 84999025106     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.09.025     Document Type: Article
Times cited : (60)

References (44)
  • 1
    • 84875404201 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation
    • [1] Zhao, F., Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation. Neurocomputing 106 (2013), 115–125.
    • (2013) Neurocomputing , vol.106 , pp. 115-125
    • Zhao, F.1
  • 2
    • 33845987065 scopus 로고    scopus 로고
    • An improved ant colony algorithm for fuzzy clustering in image segmentation
    • [2] Han, Y., Shi, P., An improved ant colony algorithm for fuzzy clustering in image segmentation. Neurocomputing 70 (2007), 665–671.
    • (2007) Neurocomputing , vol.70 , pp. 665-671
    • Han, Y.1    Shi, P.2
  • 3
    • 84922745189 scopus 로고    scopus 로고
    • A multiobjective spatial fuzzy clustering algorithm for image segmentation
    • [3] Zhao, F., Liu, H., Fan, J., A multiobjective spatial fuzzy clustering algorithm for image segmentation. Appl. Soft Comput. 30 (2015), 48–57.
    • (2015) Appl. Soft Comput. , vol.30 , pp. 48-57
    • Zhao, F.1    Liu, H.2    Fan, J.3
  • 4
    • 84907314415 scopus 로고    scopus 로고
    • A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches
    • [4] Agrawal, S., Panda, R., Dora, L., A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches. Appl. Soft Comput. 24 (2014), 522–533.
    • (2014) Appl. Soft Comput. , vol.24 , pp. 522-533
    • Agrawal, S.1    Panda, R.2    Dora, L.3
  • 5
    • 84948798880 scopus 로고    scopus 로고
    • Robust fuzzy clustering using nonsymmetric student's t finite mixture model for MR image segmentation
    • [5] Zhu, H., Pan, X., Robust fuzzy clustering using nonsymmetric student's t finite mixture model for MR image segmentation. Neurocomputing 175 (2016), 500–514.
    • (2016) Neurocomputing , vol.175 , pp. 500-514
    • Zhu, H.1    Pan, X.2
  • 6
    • 84910624398 scopus 로고    scopus 로고
    • A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering
    • [6] Askari, S., Montazerin, N., A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering. Expert Syst. Appl. 42 (2015), 2121–2135.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 2121-2135
    • Askari, S.1    Montazerin, N.2
  • 7
    • 84936867444 scopus 로고    scopus 로고
    • A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables
    • [7] Askari, S., Montazerin, N., Fazel Zarandi, M.H., A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables. Appl. Soft Comput. 35 (2015), 151–160.
    • (2015) Appl. Soft Comput. , vol.35 , pp. 151-160
    • Askari, S.1    Montazerin, N.2    Fazel Zarandi, M.H.3
  • 8
    • 77952550094 scopus 로고    scopus 로고
    • Automatic clustering-based identification of autoregressive fuzzy inference models for time series
    • [8] Pouzols, F.M., Barros, A.B., Automatic clustering-based identification of autoregressive fuzzy inference models for time series. Neurocomputing 73 (2010), 1937–1949.
    • (2010) Neurocomputing , vol.73 , pp. 1937-1949
    • Pouzols, F.M.1    Barros, A.B.2
  • 9
    • 84882912099 scopus 로고    scopus 로고
    • Color segmentation by fuzzy co-clustering of chrominance color features
    • [9] Hanmandlu, M., Verma, O.P., Susan, S., Madasu, V.K., Color segmentation by fuzzy co-clustering of chrominance color features. Neurocomputing 120 (2013), 235–249.
    • (2013) Neurocomputing , vol.120 , pp. 235-249
    • Hanmandlu, M.1    Verma, O.P.2    Susan, S.3    Madasu, V.K.4
  • 10
    • 77957925437 scopus 로고    scopus 로고
    • Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process
    • [10] Eslamloueyan, R., Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process. Appl. Soft Comput. 11 (2011), 1407–1415.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1407-1415
    • Eslamloueyan, R.1
  • 11
    • 84891594013 scopus 로고    scopus 로고
    • Fuzzy clustering with biological knowledge for gene selection
    • [11] Ghosh, S., Mitra, S., Dattagupta, R., Fuzzy clustering with biological knowledge for gene selection. Appl. Soft Comput. 16 (2014), 102–111.
    • (2014) Appl. Soft Comput. , vol.16 , pp. 102-111
    • Ghosh, S.1    Mitra, S.2    Dattagupta, R.3
  • 12
    • 0021583718 scopus 로고
    • FCM: the fuzzy c-means clustering algorithm
    • [12] Bezdek, J.C., Ehrlich, R., Full, W., FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10:2–3 (1984), 191–203.
    • (1984) Comput. Geosci. , vol.10 , Issue.2-3 , pp. 191-203
    • Bezdek, J.C.1    Ehrlich, R.2    Full, W.3
  • 13
    • 0018918224 scopus 로고
    • A convergence theorem for the fuzzy ISODATA clustering algorithms
    • [13] Bezdek, J.C., A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2:1 (1980), 1–8.
    • (1980) IEEE Trans. Pattern Anal. Mach. Intell. , vol.2 , Issue.1 , pp. 1-8
    • Bezdek, J.C.1
  • 14
    • 27644485640 scopus 로고    scopus 로고
    • A new convergence proof of fuzzy c-means
    • [14] Groll, L., Jakel, J., A new convergence proof of fuzzy c-means. IEEE Trans. Fuzzy Syst. 13 (2005), 717–720.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , pp. 717-720
    • Groll, L.1    Jakel, J.2
  • 15
    • 0022927455 scopus 로고
    • Local convergence of the fuzzy c-means algorithms
    • [15] Hathaway, R.J., Bezdek, J.C., Local convergence of the fuzzy c-means algorithms. Pattern Recognit. 19:6 (1986), 477–480.
    • (1986) Pattern Recognit. , vol.19 , Issue.6 , pp. 477-480
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 16
    • 0028543130 scopus 로고
    • Optimality tests for the fuzzy c-means algorithm
    • [16] Wei, W., Mendel, J.M., Optimality tests for the fuzzy c-means algorithm. Pattern Recognit. 27:11 (1994), 1567–1573.
    • (1994) Pattern Recognit. , vol.27 , Issue.11 , pp. 1567-1573
    • Wei, W.1    Mendel, J.M.2
  • 17
    • 0024192973 scopus 로고
    • Optimality tests for fixed points of the fuzzy c-means algorithm
    • [17] Kim, T., Bezdek, J.C., Hathaway, R.J., Optimality tests for fixed points of the fuzzy c-means algorithm. Pattern Recognit. 21:6 (1988), 651–663.
    • (1988) Pattern Recognit. , vol.21 , Issue.6 , pp. 651-663
    • Kim, T.1    Bezdek, J.C.2    Hathaway, R.J.3
  • 18
    • 84901014957 scopus 로고    scopus 로고
    • Generalization rules for the suppressed fuzzy c-means clustering algorithm
    • [18] Szilagyi, L., Szilagyi, S.M., Generalization rules for the suppressed fuzzy c-means clustering algorithm. Neurocomputing 139 (2014), 298–309.
    • (2014) Neurocomputing , vol.139 , pp. 298-309
    • Szilagyi, L.1    Szilagyi, S.M.2
  • 19
    • 0028667331 scopus 로고
    • New algorithms for solving the fuzzy clustering problem
    • [19] Kamel, M.S., Selim, S.Z., New algorithms for solving the fuzzy clustering problem. Pattern Recognit. 27:3 (1994), 421–428.
    • (1994) Pattern Recognit. , vol.27 , Issue.3 , pp. 421-428
    • Kamel, M.S.1    Selim, S.Z.2
  • 20
    • 84887610180 scopus 로고    scopus 로고
    • Online fuzzy medoid based clustering algorithms
    • [20] Labroche, N., Online fuzzy medoid based clustering algorithms. Neurocomputing 126 (2014), 141–150.
    • (2014) Neurocomputing , vol.126 , pp. 141-150
    • Labroche, N.1
  • 21
    • 84930273919 scopus 로고    scopus 로고
    • A multi-view relational fuzzy c-medoid vectors clustering algorithm
    • [21] de, F., de Carvalho, A.T., de Melo, F.M., Lechevallier, Y., A multi-view relational fuzzy c-medoid vectors clustering algorithm. Neurocomputing 163 (2015), 115–123.
    • (2015) Neurocomputing , vol.163 , pp. 115-123
    • de, F.1    de Carvalho, A.T.2    de Melo, F.M.3    Lechevallier, Y.4
  • 22
    • 0027658607 scopus 로고
    • A global algorithm for the fuzzy clustering problem
    • [22] Al-Sultan, K.S., Selim, S.Z., A global algorithm for the fuzzy clustering problem. Pattern Recognit. 26:9 (1993), 1357–1361.
    • (1993) Pattern Recognit. , vol.26 , Issue.9 , pp. 1357-1361
    • Al-Sultan, K.S.1    Selim, S.Z.2
  • 23
    • 84924075165 scopus 로고    scopus 로고
    • A sparse fuzzy c-means algorithm based on sparse clustering framework
    • [23] Qiu, X., Qiu, Y., Feng, G., Li, P., A sparse fuzzy c-means algorithm based on sparse clustering framework. Neurocomputing 157 (2015), 290–295.
    • (2015) Neurocomputing , vol.157 , pp. 290-295
    • Qiu, X.1    Qiu, Y.2    Feng, G.3    Li, P.4
  • 24
    • 35348845206 scopus 로고    scopus 로고
    • A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis
    • [24] Yu, J., Yang, M.-S., A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis. IEEE Trans. Fuzzy Syst. 15:5 (2007), 904–915.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.5 , pp. 904-915
    • Yu, J.1    Yang, M.-S.2
  • 25
    • 84949685813 scopus 로고    scopus 로고
    • Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm
    • [25] Ding, Y., Fu, X., Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing 188 (2016), 233–238.
    • (2016) Neurocomputing , vol.188 , pp. 233-238
    • Ding, Y.1    Fu, X.2
  • 26
    • 84949681137 scopus 로고    scopus 로고
    • Multivariate fuzzy C-Means algorithms with weighting
    • [26] Pimentel, B.A., de Souza, R.M.C.R., Multivariate fuzzy C-Means algorithms with weighting. Neurocomputing 174 (2016), 946–965.
    • (2016) Neurocomputing , vol.174 , pp. 946-965
    • Pimentel, B.A.1    de Souza, R.M.C.R.2
  • 27
    • 80052781450 scopus 로고    scopus 로고
    • Analysis of parameters elections for fuzzy c-means
    • [27] Wu, K.-L., Analysis of parameters elections for fuzzy c-means. Pattern Recognit. 45 (2012), 407–415.
    • (2012) Pattern Recognit. , vol.45 , pp. 407-415
    • Wu, K.-L.1
  • 28
    • 0036779072 scopus 로고    scopus 로고
    • Alternative c-means clustering algorithms
    • [28] Wu, K.-L., Yang, M.-S., Alternative c-means clustering algorithms. Pattern Recognit. 35 (2002), 2267–2278.
    • (2002) Pattern Recognit. , vol.35 , pp. 2267-2278
    • Wu, K.-L.1    Yang, M.-S.2
  • 29
    • 84893653479 scopus 로고    scopus 로고
    • A size-insensitive integrity-based fuzzy c-means method for data clustering
    • [29] Lin, P.-L., Huang, P.-W., Kuo, C.H., Lai, Y.H., A size-insensitive integrity-based fuzzy c-means method for data clustering. Pattern Recognit. 47 (2014), 2042–2056.
    • (2014) Pattern Recognit. , vol.47 , pp. 2042-2056
    • Lin, P.-L.1    Huang, P.-W.2    Kuo, C.H.3    Lai, Y.H.4
  • 31
    • 0029245943 scopus 로고
    • Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation-Part I
    • [31] Krisnapuram, R., Frigui, H., Nasroui, O., Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation-Part I. IEEE Trans. Fuzzy Syst. 3:1 (1995), 29–43.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.1 , pp. 29-43
    • Krisnapuram, R.1    Frigui, H.2    Nasroui, O.3
  • 32
    • 0029246295 scopus 로고
    • Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation-Part II
    • [32] Krisnapuram, R., Frigui, H., Nasroui, O., Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation-Part II. IEEE Trans. Fuzzy Syst. 3:1 (1995), 44–60.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.1 , pp. 44-60
    • Krisnapuram, R.1    Frigui, H.2    Nasroui, O.3
  • 33
    • 84925186551 scopus 로고    scopus 로고
    • Collaborative fuzzy clustering from multiple weighted views
    • [33] Jiang, Y., Chung, F.-L., Wang, S., Deng, Z., Wang, J., Qian, P., Collaborative fuzzy clustering from multiple weighted views. IEEE Trans. Cybern. 45:4 (2015), 688–701.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.4 , pp. 688-701
    • Jiang, Y.1    Chung, F.-L.2    Wang, S.3    Deng, Z.4    Wang, J.5    Qian, P.6
  • 35
    • 0027595430 scopus 로고
    • A possibilistic approach to clustering
    • [35] Krishnapuram, R., Keller, J., A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1:2 (1993), 98–110.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.2 , pp. 98-110
    • Krishnapuram, R.1    Keller, J.2
  • 36
    • 0030214781 scopus 로고    scopus 로고
    • The possibilistic c-Means algorithm: insights and recommendations
    • [36] Krishnapuram, R., Keller, J., The possibilistic c-Means algorithm: insights and recommendations. IEEE Trans. Fuzzy Syst. 4:3 (1996), 385–393.
    • (1996) IEEE Trans. Fuzzy Syst. , vol.4 , Issue.3 , pp. 385-393
    • Krishnapuram, R.1    Keller, J.2
  • 37
    • 77957791609 scopus 로고    scopus 로고
    • Comparing fuzzy, probabilistic, and possibilistic partitions
    • [37] Anderson, D., Bezdek, J.C., Popescu, M., Keller, J., Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Trans. Fuzzy Syst. 18:5 (2010), 906–917.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.5 , pp. 906-917
    • Anderson, D.1    Bezdek, J.C.2    Popescu, M.3    Keller, J.4
  • 39
    • 0029226148 scopus 로고
    • A maximum-entropy approach to fuzzy clustering
    • [39] Li, R.P., Mukaidono, M., A maximum-entropy approach to fuzzy clustering. IEEE Int. Conf. Fuzzy Syst. 4 (1995), 2227–2232.
    • (1995) IEEE Int. Conf. Fuzzy Syst. , vol.4 , pp. 2227-2232
    • Li, R.P.1    Mukaidono, M.2
  • 40
    • 0000309136 scopus 로고    scopus 로고
    • Gaussian clustering method based on maximum-fuzzy-entropy interpretation
    • [40] Li, R.P., Mukaidono, M., Gaussian clustering method based on maximum-fuzzy-entropy interpretation. Fuzzy Sets Syst. 102 (1999), 253–258.
    • (1999) Fuzzy Sets Syst. , vol.102 , pp. 253-258
    • Li, R.P.1    Mukaidono, M.2
  • 41
  • 42
    • 38949102340 scopus 로고    scopus 로고
    • A convergence theorem for the fuzzy subspace clustering (FSC) algorithm
    • [42] Gan, G.J., Wu, J.H., A convergence theorem for the fuzzy subspace clustering (FSC) algorithm. Pattern Recognit. 41 (2008), 1939–1947.
    • (2008) Pattern Recognit. , vol.41 , pp. 1939-1947
    • Gan, G.J.1    Wu, J.H.2
  • 43
    • 84876729548 scopus 로고    scopus 로고
    • Rough clustering using generalized fuzzy clustering algorithm
    • [43] Lai, J.Z.C., Juan, E.Y.T., Lai, F.J.C., Rough clustering using generalized fuzzy clustering algorithm. Pattern Recognit. 46 (2013), 2538–2547.
    • (2013) Pattern Recognit. , vol.46 , pp. 2538-2547
    • Lai, J.Z.C.1    Juan, E.Y.T.2    Lai, F.J.C.3
  • 44
    • 84884906380 scopus 로고    scopus 로고
    • A validity index for fuzzy and possibilistic c-means algorithm
    • [44] Zhang, C., Zhou, Y., Martin, T., A validity index for fuzzy and possibilistic c-means algorithm. Proc. IPMU'08, 2008, 877–882.
    • (2008) Proc. IPMU'08 , pp. 877-882
    • Zhang, C.1    Zhou, Y.2    Martin, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.