메뉴 건너뛰기




Volumn 5, Issue , 2016, Pages 3474-3494

Generalization properties and implicit regularization for multiple passes SGM

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; ARTIFICIAL INTELLIGENCE; GRADIENT METHODS; STOCHASTIC SYSTEMS;

EID: 84998886271     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (21)
  • 1
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • Bartlett, Peter L and Mendelson, Shahar. Rademacher and Gaussian complexities: Risk bounds and structural results. The Journal of Machine Learning Research, 3: 463-482, 2003.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 4
    • 84867120454 scopus 로고    scopus 로고
    • Incremental gradient, subgradient, and proximal methods for convex optimization: A survey
    • Bertsekas, Dimitri P. Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. Optimization for Machine Learning, 2010:1-38, 2011.
    • (2011) Optimization for Machine Learning, 2010 , pp. 1-38
    • Bertsekas, D.P.1
  • 7
    • 33846333019 scopus 로고    scopus 로고
    • Lecture notes of EE392o, Stanford University, Autumn Quarter
    • Boyd, Stephen, Xiao, Lin, and Mutapcic, Almir. Subgradient methods. Lecture notes of EE392o, Stanford University, Autumn Quarter 2003.
    • (2003) Subgradient Methods
    • Boyd, S.1    Xiao, L.2    Mutapcic, A.3
  • 13
    • 3142691501 scopus 로고    scopus 로고
    • Generalization error bounds for Bayesian mixture algorithms
    • Meir, Ron and Zhang, Tong. Generalization error bounds for Bayesian mixture algorithms. The Journal of Machine Learning Research, 4:839-860, 2003.
    • (2003) The Journal of Machine Learning Research , vol.4 , pp. 839-860
    • Meir, R.1    Zhang, T.2
  • 14
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • Nemirovski, Arkadi, Juditsky, Anatoli, Lan, Guanghui, and Shapiro, Alexander. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.
    • (2009) SIAM Journal on Optimization , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 15
    • 84937915654 scopus 로고    scopus 로고
    • Simultaneous model selection and optimization through parameter-free stochastic learning
    • Orabona, Francesco. Simultaneous model selection and optimization through parameter-free stochastic learning. In Advances in Neural Information Processing Systems, pp. 1116-1124, 2014.
    • (2014) Advances in Neural Information Processing Systems , pp. 1116-1124
    • Orabona, F.1
  • 18
    • 84897554805 scopus 로고    scopus 로고
    • Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes
    • Shamir, Ohad and Zhang, Tong. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes. In Proceedings of the 30th International Conference on Machine Learning, pp. 71-79, 2013.
    • (2013) Proceedings of the 30th International Conference on Machine Learning , pp. 71-79
    • Shamir, O.1    Zhang, T.2
  • 20
    • 84906663901 scopus 로고    scopus 로고
    • Online learning as stochastic approximation of regularization paths: Optimality and almost-sure convergence
    • Tarres, Pierre and Yao, Yuan. Online learning as stochastic approximation of regularization paths: Optimality and almost-sure convergence. IEEE Transactions on Information Theory, 60(9):5716-5735, 2014.
    • (2014) IEEE Transactions on Information Theory , vol.60 , Issue.9 , pp. 5716-5735
    • Tarres, P.1    Yao, Y.2
  • 21
    • 52949113792 scopus 로고    scopus 로고
    • Online gradient descent learning algorithms
    • Ying, Yiming and Pontil, Massimiliano. Online gradient descent learning algorithms. Foundations of Computational Mathematics, 8(5):561-596, 2008.
    • (2008) Foundations of Computational Mathematics , vol.8 , Issue.5 , pp. 561-596
    • Ying, Y.1    Pontil, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.