-
1
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
Bartlett, Peter L and Mendelson, Shahar. Rademacher and Gaussian complexities: Risk bounds and structural results. The Journal of Machine Learning Research, 3: 463-482, 2003.
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
2
-
-
26444592981
-
Local rademacher complexities
-
Bartlett, Peter L, Bousquet, Olivier, and Mendelson, Shahar. Local rademacher complexities. Annals of Statistics, 33(4): 1497-1537, 2005.
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1497-1537
-
-
Bartlett, P.L.1
Bousquet, O.2
Mendelson, S.3
-
4
-
-
84867120454
-
Incremental gradient, subgradient, and proximal methods for convex optimization: A survey
-
Bertsekas, Dimitri P. Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. Optimization for Machine Learning, 2010:1-38, 2011.
-
(2011)
Optimization for Machine Learning, 2010
, pp. 1-38
-
-
Bertsekas, D.P.1
-
7
-
-
33846333019
-
-
Lecture notes of EE392o, Stanford University, Autumn Quarter
-
Boyd, Stephen, Xiao, Lin, and Mutapcic, Almir. Subgradient methods. Lecture notes of EE392o, Stanford University, Autumn Quarter 2003.
-
(2003)
Subgradient Methods
-
-
Boyd, S.1
Xiao, L.2
Mutapcic, A.3
-
11
-
-
85015190946
-
-
arXiv preprint arXiv:1509.01240
-
Hardt, Moritz, Recht, Benjamin, and Singer, Yoram. Train faster, generalize better: Stability of stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2016.
-
(2016)
Train Faster, Generalize Better: Stability of Stochastic Gradient Descent
-
-
Hardt, M.1
Recht, B.2
Singer, Y.3
-
12
-
-
84979891846
-
Iterative regularization for learning with convex loss functions
-
To appear
-
Lin, Junhong, Rosasco, Lorenzo, and Zhou, Ding-Xuan. Iterative regularization for learning with convex loss functions. The Journal of Machine Learning Research, To appear, 2016.
-
(2016)
The Journal of Machine Learning Research
-
-
Lin, J.1
Rosasco, L.2
Zhou, D.-X.3
-
13
-
-
3142691501
-
Generalization error bounds for Bayesian mixture algorithms
-
Meir, Ron and Zhang, Tong. Generalization error bounds for Bayesian mixture algorithms. The Journal of Machine Learning Research, 4:839-860, 2003.
-
(2003)
The Journal of Machine Learning Research
, vol.4
, pp. 839-860
-
-
Meir, R.1
Zhang, T.2
-
14
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
Nemirovski, Arkadi, Juditsky, Anatoli, Lan, Guanghui, and Shapiro, Alexander. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.
-
(2009)
SIAM Journal on Optimization
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
15
-
-
84937915654
-
Simultaneous model selection and optimization through parameter-free stochastic learning
-
Orabona, Francesco. Simultaneous model selection and optimization through parameter-free stochastic learning. In Advances in Neural Information Processing Systems, pp. 1116-1124, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 1116-1124
-
-
Orabona, F.1
-
18
-
-
84897554805
-
Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes
-
Shamir, Ohad and Zhang, Tong. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes. In Proceedings of the 30th International Conference on Machine Learning, pp. 71-79, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, pp. 71-79
-
-
Shamir, O.1
Zhang, T.2
-
20
-
-
84906663901
-
Online learning as stochastic approximation of regularization paths: Optimality and almost-sure convergence
-
Tarres, Pierre and Yao, Yuan. Online learning as stochastic approximation of regularization paths: Optimality and almost-sure convergence. IEEE Transactions on Information Theory, 60(9):5716-5735, 2014.
-
(2014)
IEEE Transactions on Information Theory
, vol.60
, Issue.9
, pp. 5716-5735
-
-
Tarres, P.1
Yao, Y.2
-
21
-
-
52949113792
-
Online gradient descent learning algorithms
-
Ying, Yiming and Pontil, Massimiliano. Online gradient descent learning algorithms. Foundations of Computational Mathematics, 8(5):561-596, 2008.
-
(2008)
Foundations of Computational Mathematics
, vol.8
, Issue.5
, pp. 561-596
-
-
Ying, Y.1
Pontil, M.2
|