메뉴 건너뛰기




Volumn 3, Issue , 2016, Pages 1691-1715

Dirichlet process mixture model for correcting technical variation in single-cell gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CELLS; CYTOLOGY; GENE EXPRESSION; GENES; INFERENCE ENGINES; ITERATIVE METHODS; LEARNING SYSTEMS; MIXTURES;

EID: 84998704868     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (20)

References (42)
  • 3
    • 0000708831 scopus 로고
    • Mixtures of dirichlet processes with applications to Bayesian nonparametric problems
    • Antoniak, Charles E. Mixtures of dirichlet processes with applications to bayesian nonparametric problems. The Annals of Statistics, pp. 1152-1174, 1974.
    • (1974) The Annals of Statistics , pp. 1152-1174
    • Antoniak, C.E.1
  • 4
    • 84883201530 scopus 로고    scopus 로고
    • Deep learning of representations: Looking forward
    • Springer
    • Bengio, Yoshua. Deep learning of representations: Looking forward. In Statistical language and speech processing, pp. 1-37. Springer, 2013.
    • (2013) Statistical Language and Speech Processing , pp. 1-37
    • Bengio, Y.1
  • 5
    • 14344266175 scopus 로고    scopus 로고
    • Variational methods for the dirichlet process
    • Brodley, Carla E. ed., ACM International Conference Proceeding Series
    • Blei, David M. and Jordan, Michael I. Variational methods for the dirichlet process. In Brodley, Carla E. (ed.), Proceedings of the International Conference on Machine Learning (ICML 2004), volume 69. ACM International Conference Proceeding Series, 2004.
    • (2004) Proceedings of the International Conference on Machine Learning (ICML 2004) , vol.69
    • Blei, D.M.1    Jordan, M.I.2
  • 8
    • 84921301669 scopus 로고    scopus 로고
    • Unraveling cell populations in tumors by single-cell mass cytometry
    • Di Palma, Serena and Bodenmiller, Bernd. Unraveling cell populations in tumors by single-cell mass cytometry. Current opinion in biotechnology, 31:122-129, 2015.
    • (2015) Current Opinion in Biotechnology , vol.31 , pp. 122-129
    • Di Palma, S.1    Bodenmiller, B.2
  • 9
    • 0031256597 scopus 로고    scopus 로고
    • Wishart and pseudo-wishart distributions and some applications to shape theory
    • Diaz-Garcia, José A, Jáimez, Ramón Gutierrez, and Mardia, Kanti V. Wishart and pseudo-wishart distributions and some applications to shape theory. Journal of Multivariate Analysis, 63(1):73-87, 1997.
    • (1997) Journal of Multivariate Analysis , vol.63 , Issue.1 , pp. 73-87
    • Diaz-Garcia, J.A.1    Jáimez, R.G.2    Mardia, K.V.3
  • 11
    • 84919372228 scopus 로고    scopus 로고
    • Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics
    • Gawad, Charles, Koh, Winston, and Quake, Stephen R. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proceedings of the National Academy of Sciences, 111(50):17947-17952, 2014.
    • (2014) Proceedings of the National Academy of Sciences , vol.111 , Issue.50 , pp. 17947-17952
    • Gawad, C.1    Koh, W.2    Quake, S.R.3
  • 12
    • 78650297540 scopus 로고    scopus 로고
    • Dirichlet process Gaussian mixture models: Choice of the base distribution
    • Görür, Dilan and Rasmussen, Carl Edward. Dirichlet process gaussian mixture models: Choice of the base distribution. In Journal of Computer Science and Technology, pp. 653-664, 2010.
    • (2010) Journal of Computer Science and Technology , pp. 653-664
    • Görür, D.1    Rasmussen, C.E.2
  • 13
    • 84866953427 scopus 로고    scopus 로고
    • Cel-seq: Single-cell RNA-seq by multiplexed linear amplification
    • Hashimshony, Tamar, Wagner, Florian, Sher, Noa, and Yanai, Itai. Cel-seq: single-cell rna-seq by multiplexed linear amplification. Cell reports, 2(3):666-673, 2012.
    • (2012) Cell Reports , vol.2 , Issue.3 , pp. 666-673
    • Hashimshony, T.1    Wagner, F.2    Sher, N.3    Yanai, I.4
  • 17
    • 84897139457 scopus 로고    scopus 로고
    • Every cell is special: Genome-wide studies add a new dimension to single-cell biology
    • Junker, Jan Philipp and van Oudenaarden, Alexander. Every cell is special: genome-wide studies add a new dimension to single-cell biology. Cell, 157(1):8-11, 2014.
    • (2014) Cell , vol.157 , Issue.1 , pp. 8-11
    • Junker, J.P.1    Van Oudenaarden, A.2
  • 18
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko, Peter V, Silberstein, Lev, and Scadden, David T. Bayesian approach to single-cell differential expression analysis. Nature methods, 11(7):740-742, 2014.
    • (2014) Nature Methods , vol.11 , Issue.7 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 20
    • 0000220846 scopus 로고
    • Contributions to the theory of dirichlet processes
    • Korwar, Ramesh M and Hollander, Myles. Contributions to the theory of dirichlet processes. The Annals of Probability, pp. 705-711, 1973.
    • (1973) The Annals of Probability , pp. 705-711
    • Korwar, R.M.1    Hollander, M.2
  • 22
    • 84977718808 scopus 로고
    • Heteroskedasticity in stock return data: Volume versus garch effects
    • Lamoureux, Christopher G and Lastrapes, William D. Heteroskedasticity in stock return data: volume versus garch effects. The Journal of Finance, 45(1):221-229, 1990.
    • (1990) The Journal of Finance , vol.45 , Issue.1 , pp. 221-229
    • Lamoureux, C.G.1    Lastrapes, W.D.2
  • 24
    • 34247990255 scopus 로고
    • On the kolmogorov-smirnov test for normality with mean and variance unknown
    • Lilliefors, Hubert W. On the kolmogorov-smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318):399-402, 1967.
    • (1967) Journal of the American Statistical Association , vol.62 , Issue.318 , pp. 399-402
    • Lilliefors, H.W.1
  • 26
    • 85027920141 scopus 로고    scopus 로고
    • Cancer genomics: One cell at a time
    • Navin, Nicholas E. Cancer genomics: one cell at a time. Genome Biol, 15:452, 2014.
    • (2014) Genome Biol , vol.15 , pp. 452
    • Navin, N.E.1
  • 27
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for dirichlet process mixture models
    • Neal, Radford M. Markov chain sampling methods for dirichlet process mixture models. Journal of computational and graphical statistics, 9(2):249-265, 2000.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.M.1
  • 29
    • 34047215010 scopus 로고    scopus 로고
    • Flexible random-effects models using Bayesian semi-parametric models: Applications to institutional comparisons
    • ACM International Conference Proceeding Series
    • Ohlssen, David I., Sharpies, Linda D., and Spiegelhalter, David J. Flexible random-effects models using bayesian semi-parametric models: applications to institutional comparisons. In Statistics in Medicine, volume 26(9), pp. 2088-2112. ACM International Conference Proceeding Series, 2007.
    • (2007) Statistics in Medicine , vol.26 , Issue.9 , pp. 2088-2112
    • Ohlssen, D.I.1    Sharpies, L.D.2    Spiegelhalter, D.J.3
  • 30
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • Oshlack, Alicia, Robinson, Mark D, Young, Matthew D, et al. From rna-seq reads to differential expression results. Genome biol, 11(12):220, 2010.
    • (2010) Genome Biol , vol.11 , Issue.12 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 33
    • 84929151009 scopus 로고    scopus 로고
    • Spatial reconstruction of single-cell gene expression data
    • Satija, Rahul, Farrell, Jeffrey A, Gennert, David, Schier, Alexander F, and Regev, Aviv. Spatial reconstruction of single-cell gene expression data. Nature biotechnology, 33(5):495-502, 2015.
    • (2015) Nature Biotechnology , vol.33 , Issue.5 , pp. 495-502
    • Satija, R.1    Farrell, J.A.2    Gennert, D.3    Schier, A.F.4    Regev, A.5
  • 36
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • January
    • Stegle, Oliver. Computational and analytical challenges in single-cell transcriptomics. Nature Publishing Group, (January 2014): 133-145. ISSN 1471-0056. doi: 10. 1038/nrg3833.
    • (2014) Nature Publishing Group , pp. 133-145
    • Stegle, O.1
  • 38
    • 84953226880 scopus 로고    scopus 로고
    • Basics: Bayesian analysis of single-cell sequencing data
    • Vallejos, Catalina A., John C. Marioni and Richardson, Sylvia. Basics: Bayesian analysis of single-cell sequencing data. PLoS Computational Biology, 11(6):e1004333, 2015.
    • (2015) PLoS Computational Biology , vol.11 , Issue.6 , pp. e1004333
    • Vallejos, C.A.1    Marioni, J.C.2    Richardson, S.3
  • 40
    • 77956773597 scopus 로고    scopus 로고
    • The 11-consistency of dirichlet mixtures in multivariate Bayesian density estimation
    • Wu, Yuefeng and Ghosal, Subhashis. The 11-consistency of dirichlet mixtures in multivariate bayesian density estimation. Journal of Multivariate Analysis, 101(10):2411-2419, 2010.
    • (2010) Journal of Multivariate Analysis , vol.101 , Issue.10 , pp. 2411-2419
    • Wu, Y.1    Ghosal, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.