메뉴 건너뛰기




Volumn 51, Issue , 2016, Pages 60-73

Comparison of sampling strategies for object-based classification of urban vegetation from Very High Resolution satellite images

Author keywords

Active learning; Object based classification; Random forest; Sampling strategies evaluation; Urban vegetation mapping; VHR satellite images

Indexed keywords

ALGORITHM; IMAGE CLASSIFICATION; MAPPING; SAMPLING; SATELLITE IMAGERY; URBAN AREA; VEGETATION;

EID: 84997523905     PISSN: 15698432     EISSN: 1872826X     Source Type: Journal    
DOI: 10.1016/j.jag.2016.04.005     Document Type: Article
Times cited : (25)

References (57)
  • 2
    • 84890224189 scopus 로고    scopus 로고
    • Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery
    • Belgiu, M., Drǎguţ, L., Strobl, J., Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery. ISPRS J. Photogramm. Remote Sens. 87 (2014), 205–215.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.87 , pp. 205-215
    • Belgiu, M.1    Drǎguţ, L.2    Strobl, J.3
  • 3
    • 84906783353 scopus 로고    scopus 로고
    • FNN: Fast Nearest Neighbor Search Algorithms and Applications
    • R package version 1.1
    • Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., Li, S., FNN: Fast Nearest Neighbor Search Algorithms and Applications. 2013, R package version 1.1.
    • (2013)
    • Beygelzimer, A.1    Kakadet, S.2    Langford, J.3    Arya, S.4    Mount, D.5    Li, S.6
  • 5
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke, T., Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (2010), 2–16.
    • (2010) ISPRS J. Photogramm. Remote Sens. , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 84997232207 scopus 로고    scopus 로고
    • Orientations nationales pour la préservation et la restauration des continuités écologiques. Guide 2–Appui méthodologique à l’élaboration régionale de la TVB, Rapport du comité opérationnel TVB du Grenelle de l'Environnement. Paris, France.
    • COMOP, 2009. Orientations nationales pour la préservation et la restauration des continuités écologiques. Guide 2–Appui méthodologique à l’élaboration régionale de la TVB, Rapport du comité opérationnel TVB du Grenelle de l'Environnement. Paris, France.
    • (2009)
  • 9
    • 39749119412 scopus 로고    scopus 로고
    • Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation
    • Canty, M.J., Nielsen, A.A., Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sens. Environ. 112 (2008), 1025–1036.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1025-1036
    • Canty, M.J.1    Nielsen, A.A.2
  • 10
    • 0036827545 scopus 로고    scopus 로고
    • The effect of training strategies on supervised classification at different spatial resolutions
    • Chen, D.M., Stow, D., The effect of training strategies on supervised classification at different spatial resolutions. Photogramm. Eng. Remote Sens. 68 (2002), 1155–1161.
    • (2002) Photogramm. Eng. Remote Sens. , vol.68 , pp. 1155-1161
    • Chen, D.M.1    Stow, D.2
  • 11
    • 20444392475 scopus 로고    scopus 로고
    • Using Random Forest to Learn Imbalanced Data (No. 666)
    • Statistics Department, University of California Berkeley
    • Chen, C., Liaw, A., Breiman, L., Using Random Forest to Learn Imbalanced Data (No. 666). 2004, Statistics Department, University of California, Berkeley.
    • (2004)
    • Chen, C.1    Liaw, A.2    Breiman, L.3
  • 12
    • 49449103785 scopus 로고    scopus 로고
    • Classification of the wildland–urban interface: a comparison of pixel- and object-based classifications using high-resolution aerial photography
    • Cleve, C., Kelly, M., Kearns, F.R., Moritz, M., Classification of the wildland–urban interface: a comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst. 32 (2008), 317–326.
    • (2008) Comput. Environ. Urban Syst. , vol.32 , pp. 317-326
    • Cleve, C.1    Kelly, M.2    Kearns, F.R.3    Moritz, M.4
  • 13
    • 84966450010 scopus 로고    scopus 로고
    • Assessing the Accuracy of Remotely Sensed Data: Principles and Practices
    • CRC Press/Taylor & Francis, Boca Raton
    • Congalton, R.G., Green, K., Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. 2009, CRC Press/Taylor & Francis, Boca Raton.
    • (2009)
    • Congalton, R.G.1    Green, K.2
  • 15
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Demir, B., Persello, C., Bruzzone, L., Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 49 (2011), 1014–1031.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 16
    • 84890989678 scopus 로고    scopus 로고
    • Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method
    • Demir, B., Minello, L., Bruzzone, L., Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method. IEEE Trans. Geosci. Remote Sens. 52 (2014), 1272–1284.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 1272-1284
    • Demir, B.1    Minello, L.2    Bruzzone, L.3
  • 18
    • 84891136260 scopus 로고    scopus 로고
    • Automated parameterisation for multi-scale image segmentation on multiple layers
    • Drǎguţ, L., Csillik, O., Eisank, C., Tiede, D., Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 88 (2014), 119–127.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.88 , pp. 119-127
    • Drǎguţ, L.1    Csillik, O.2    Eisank, C.3    Tiede, D.4
  • 19
    • 84856982478 scopus 로고    scopus 로고
    • Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests
    • Duro, D.C., Franklin, S.E., Dubé, M.G., Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 33 (2012), 4502–4526.
    • (2012) Int. J. Remote Sens. , vol.33 , pp. 4502-4526
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 20
    • 46749094632 scopus 로고    scopus 로고
    • Urban Sprawl in Europe: the Ignored Challenge
    • Office for Official Publications of the European Communities Luxembourg
    • European Environment Agency, Urban Sprawl in Europe: the Ignored Challenge. 2006, Office for Official Publications of the European Communities, Luxembourg.
    • (2006)
    • European Environment Agency1
  • 21
    • 85027947054 scopus 로고    scopus 로고
    • Detecting the phenology and discriminating mediterranean natural habitats with multispectral sensors—an analysis based on multiseasonal field spectra
    • Feret, J., Corbane, C., Alleaume, S., Detecting the phenology and discriminating mediterranean natural habitats with multispectral sensors—an analysis based on multiseasonal field spectra. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8 (2015), 2294–2305.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , pp. 2294-2305
    • Feret, J.1    Corbane, C.2    Alleaume, S.3
  • 22
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification
    • Foody, G.M., Mathur, A., Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sens. Environ. 93 (2004), 107–117.
    • (2004) Remote Sens. Environ. , vol.93 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 23
    • 79960048515 scopus 로고    scopus 로고
    • Optimal region growing segmentation and its effect on classification accuracy
    • Gao, Y., Mas, J.F., Kerle, N., Navarrete Pacheco, J.A., Optimal region growing segmentation and its effect on classification accuracy. Int. J. Remote Sens. 32 (2011), 3747–3763.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 3747-3763
    • Gao, Y.1    Mas, J.F.2    Kerle, N.3    Navarrete Pacheco, J.A.4
  • 25
    • 84869491969 scopus 로고    scopus 로고
    • Interactive segmentation for change detection in multispectral remote-sensing images
    • Hichri, H., Bazi, Y., Alajlan, N., Malek, S., Interactive segmentation for change detection in multispectral remote-sensing images. IEEE Geosci. Remote Sens. Lett. 10 (2013), 298–302.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , pp. 298-302
    • Hichri, H.1    Bazi, Y.2    Alajlan, N.3    Malek, S.4
  • 26
    • 84893871809 scopus 로고    scopus 로고
    • Cartographie des continuités écologiques: quelles données pour quelles échelles territoriales? Application à la sous-trame forestière
    • Hubert-Moy, L., Nabucet, J., Vannier, C., Lefebvre, A., Cartographie des continuités écologiques: quelles données pour quelles échelles territoriales? Application à la sous-trame forestière. Revue internationale de géomatique 22 (2012), 619–640.
    • (2012) Revue internationale de géomatique , vol.22 , pp. 619-640
    • Hubert-Moy, L.1    Nabucet, J.2    Vannier, C.3    Lefebvre, A.4
  • 27
    • 84959470129 scopus 로고    scopus 로고
    • Object-based urban land cover classification using rule inheritance over very high-resolution multisensor and multitemporal data
    • Hussain, E., Shan, J., Object-based urban land cover classification using rule inheritance over very high-resolution multisensor and multitemporal data. GISci. Remote Sens. 53 (2016), 164–182.
    • (2016) GISci. Remote Sens. , vol.53 , pp. 164-182
    • Hussain, E.1    Shan, J.2
  • 31
    • 82155192323 scopus 로고    scopus 로고
    • Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis
    • Martha, T.R., Kerle, N., van Westen, C.J., Jetten, V., Kumar, K.V., Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. IEEE Trans. Geosci. Remote Sens. 49 (2011), 4928–4943.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 4928-4943
    • Martha, T.R.1    Kerle, N.2    van Westen, C.J.3    Jetten, V.4    Kumar, K.V.5
  • 32
    • 34249108636 scopus 로고    scopus 로고
    • Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery
    • Mathieu, R., Freeman, C., Aryal, J., Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landscape Urban Plann. 81 (2007), 179–192.
    • (2007) Landscape Urban Plann. , vol.81 , pp. 179-192
    • Mathieu, R.1    Freeman, C.2    Aryal, J.3
  • 34
    • 0027658896 scopus 로고
    • A review on image segmentation techniques
    • Pal, N.R., Pal, S.K., A review on image segmentation techniques. Pattern Recognit. 26 (1993), 1277–1294.
    • (1993) Pattern Recognit. , vol.26 , pp. 1277-1294
    • Pal, N.R.1    Pal, S.K.2
  • 37
    • 84897879307 scopus 로고    scopus 로고
    • Object-oriented mapping of urban trees using Random Forest classifiers
    • Puissant, A., Rougier, S., Stumpf, A., Object-oriented mapping of urban trees using Random Forest classifiers. Int. J. Appl. Earth Obs. Geoinf. 26 (2014), 235–245.
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.26 , pp. 235-245
    • Puissant, A.1    Rougier, S.2    Stumpf, A.3
  • 41
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey (No. 1648)
    • University of Wisconsin
    • Settles, B., Active learning literature survey (No. 1648). Computer Sciences Technical Report, 2010, University of Wisconsin.
    • (2010) Computer Sciences Technical Report
    • Settles, B.1
  • 42
    • 70449336666 scopus 로고    scopus 로고
    • Discriminating small wooded elements in rural landscape from aerial photography: a hybrid pixel/object-based analysis approach
    • Sheeren, D., Bastin, N., Ouin, A., Ladet, S., Balent, G., Lacombe, J.-P., Discriminating small wooded elements in rural landscape from aerial photography: a hybrid pixel/object-based analysis approach. Int. J. Remote Sens. 30 (2009), 4979–4990.
    • (2009) Int. J. Remote Sens. , vol.30 , pp. 4979-4990
    • Sheeren, D.1    Bastin, N.2    Ouin, A.3    Ladet, S.4    Balent, G.5    Lacombe, J.-P.6
  • 43
    • 79957650754 scopus 로고    scopus 로고
    • Image segmentation scale parameter optimization and land cover classification using the Random Forest algorithm
    • Smith, A., Image segmentation scale parameter optimization and land cover classification using the Random Forest algorithm. J. Spat. Sci. 55 (2010), 69–79.
    • (2010) J. Spat. Sci. , vol.55 , pp. 69-79
    • Smith, A.1
  • 44
    • 79960743609 scopus 로고    scopus 로고
    • Object-oriented mapping of landslides using Random Forests
    • Stumpf, A., Kerle, N., Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 115 (2011), 2564–2577.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 2564-2577
    • Stumpf, A.1    Kerle, N.2
  • 46
    • 84878372022 scopus 로고    scopus 로고
    • Urban vegetation classification: benefits of multitemporal RapidEye satellite data
    • Tigges, J., Lakes, T., Hostert, P., Urban vegetation classification: benefits of multitemporal RapidEye satellite data. Remote Sens. Environ. 136 (2013), 66–75.
    • (2013) Remote Sens. Environ. , vol.136 , pp. 66-75
    • Tigges, J.1    Lakes, T.2    Hostert, P.3
  • 47
  • 49
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J., A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 5 (2011), 606–617.
    • (2011) IEEE J. Sel. Top. Signal Process. , vol.5 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 50
    • 11144255291 scopus 로고    scopus 로고
    • Performance of different spectral and textural aerial photograph features in multi-source forest inventory
    • Tuominen, S., Pekkarinen, A., Performance of different spectral and textural aerial photograph features in multi-source forest inventory. Remote Sens. Environ. 94 (2005), 256–268.
    • (2005) Remote Sens. Environ. , vol.94 , pp. 256-268
    • Tuominen, S.1    Pekkarinen, A.2
  • 52
    • 84893008902 scopus 로고    scopus 로고
    • Variability of operator performance in remote-sensing image interpretation: the importance of human and external factors
    • Van Coillie, F.M.B., Gardin, S., Anseel, F., Duyck, W., Verbeke, L.P.C., De Wulf, R.R., Variability of operator performance in remote-sensing image interpretation: the importance of human and external factors. Int. J. Remote Sens. 35 (2014), 754–778.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 754-778
    • Van Coillie, F.M.B.1    Gardin, S.2    Anseel, F.3    Duyck, W.4    Verbeke, L.P.C.5    De Wulf, R.R.6
  • 53
    • 79954443140 scopus 로고    scopus 로고
    • Classification and quantification of green in the expanding urban and semi-urban complex: application of detailed field data and IKONOS-imagery
    • Van Delm, A., Gulinck, H., Classification and quantification of green in the expanding urban and semi-urban complex: application of detailed field data and IKONOS-imagery. Ecol. Indic. 11 (2011), 52–60.
    • (2011) Ecol. Indic. , vol.11 , pp. 52-60
    • Van Delm, A.1    Gulinck, H.2
  • 54
    • 84864278874 scopus 로고    scopus 로고
    • Memory-Based cluster sampling for remote sensing image classification
    • Volpi, M., Tuia, D., Kanevski, M., Memory-Based cluster sampling for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50 (2012), 3096–3106.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 3096-3106
    • Volpi, M.1    Tuia, D.2    Kanevski, M.3
  • 55
    • 77549088874 scopus 로고    scopus 로고
    • Remote sensing imagery in vegetation mapping: a review
    • Xie, Y., Sha, Z., Yu, M., Remote sensing imagery in vegetation mapping: a review. J. Plant Ecol. 1 (2008), 9–23.
    • (2008) J. Plant Ecol. , vol.1 , pp. 9-23
    • Xie, Y.1    Sha, Z.2    Yu, M.3
  • 56
    • 84896833622 scopus 로고    scopus 로고
    • Patch-based active learning (PTAL) for spectral-spatial classification on hyperspectral data
    • Xu, J., Hang, R., Liu, Q., Patch-based active learning (PTAL) for spectral-spatial classification on hyperspectral data. Int. J. Remote Sens. 35 (2014), 1846–1875.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 1846-1875
    • Xu, J.1    Hang, R.2    Liu, Q.3
  • 57
    • 85009541463 scopus 로고    scopus 로고
    • Object-oriented method for urban vegetation mapping using IKONOS imagery
    • Zhang, X., Feng, X., Jiang, H., Object-oriented method for urban vegetation mapping using IKONOS imagery. Int. J. Remote Sens. 31 (2010), 177–196.
    • (2010) Int. J. Remote Sens. , vol.31 , pp. 177-196
    • Zhang, X.1    Feng, X.2    Jiang, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.