메뉴 건너뛰기




Volumn 18, Issue 11, 2016, Pages 694-704

Predicting Insulin Treatment Scenarios with the Net Effect Method: Domain of Validity

Author keywords

CGM nonadjunctive use; Glucose sensor; Insulin therapy; Modeling; Simulation; Type 1 diabetes

Indexed keywords

GLUCOSE; INSULIN; ANTIDIABETIC AGENT; GLUCOSE BLOOD LEVEL; GLYCOSYLATED HEMOGLOBIN;

EID: 84997427243     PISSN: 15209156     EISSN: 15578593     Source Type: Journal    
DOI: 10.1089/dia.2016.0148     Document Type: Article
Times cited : (11)

References (18)
  • 1
  • 2
    • 69949146908 scopus 로고    scopus 로고
    • In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes
    • Kovatchev B, Breton M, Dalla Man C, Cobelli C: In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 2009;3:44-55.
    • (2009) J Diabetes Sci Technol , vol.3 , pp. 44-55
    • Kovatchev, B.1    Breton, M.2    Dalla Man, C.3    Cobelli, C.4
  • 4
    • 84903520604 scopus 로고    scopus 로고
    • The University of Virginia/Padova type 1 diabetes simulator matches the glucose traces of a clinical trial
    • Visentin R, Dalla Man C, Kovatchev BP, et al.: The University of Virginia/Padova type 1 diabetes simulator matches the glucose traces of a clinical trial. Diabetes Technol Ther 2014;16:428-434.
    • (2014) Diabetes Technol Ther , vol.16 , pp. 428-434
    • Visentin, R.1    Dalla Man, C.2    Kovatchev, B.P.3
  • 5
    • 84920842830 scopus 로고    scopus 로고
    • Circadian variability of insulin sensitivity: Physiological input for in silico artificial pancreas
    • Visentin R, Dalla Man C, Yogish KC, et al.: Circadian variability of insulin sensitivity: physiological input for in silico artificial pancreas. Diabetes Technol Ther 2015;17:1-7.
    • (2015) Diabetes Technol Ther , vol.17 , pp. 1-7
    • Visentin, R.1    Dalla Man, C.2    Yogish, K.C.3
  • 6
    • 4344640337 scopus 로고    scopus 로고
    • Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes
    • Hovorka R, Canonico V, Chassin LJ, et al.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 2004;25:905-920.
    • (2004) Physiol Meas , vol.25 , pp. 905-920
    • Hovorka, R.1    Canonico, V.2    Chassin, L.J.3
  • 7
    • 77954679388 scopus 로고    scopus 로고
    • Simulation environment to evaluate closed-loop insulin delivery systems in type 1 diabetes
    • Wilinska EM, Chassin LJ, Acerini CL, et al.: Simulation environment to evaluate closed-loop insulin delivery systems in type 1 diabetes. J Diabetes Sci Technol 2010;4: 132-144.
    • (2010) J Diabetes Sci Technol , vol.4 , pp. 132-144
    • Wilinska, E.M.1    Chassin, L.J.2    Acerini, C.L.3
  • 8
    • 77953067473 scopus 로고    scopus 로고
    • Identification of intraday metabolic profiles during closedloop glucose control in individuals with type 1 diabetes
    • Kanderian SS, Weinzimer S, Voskanyan G, Steil GM: Identification of intraday metabolic profiles during closedloop glucose control in individuals with type 1 diabetes. J Diabetes Sci Technol 2009;3:1047-1057.
    • (2009) J Diabetes Sci Technol , vol.3 , pp. 1047-1057
    • Kanderian, S.S.1    Weinzimer, S.2    Voskanyan, G.3    Steil, G.M.4
  • 9
    • 84991033774 scopus 로고    scopus 로고
    • Empirical representation of blood glucose in a compartmental model
    • In: Kirchsteiger H, Jørgensen JB, Renard E, del Re L, eds., Cham: Springer International Publishing
    • Patek SD, Lv D, Ortiz EA, et al.: Empirical representation of blood glucose in a compartmental model. In: Kirchsteiger H, Jørgensen JB, Renard E, del Re L, eds. Prediction Methods for Blood Glucose Concentration. Cham: Springer International Publishing, 2016.
    • (2016) Prediction Methods for Blood Glucose Concentration
    • Patek, S.D.1    Lv, D.2    Ortiz, E.A.3
  • 10
    • 84923873485 scopus 로고    scopus 로고
    • Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring
    • Kovatchev BP, Patek SD, Ortiz EA, Breton M: Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring. Diabetes Technol Ther 2015;17:1-10.
    • (2015) Diabetes Technol Ther , vol.17 , pp. 1-10
    • Kovatchev, B.P.1    Patek, S.D.2    Ortiz, E.A.3    Breton, M.4
  • 11
    • 84938574393 scopus 로고    scopus 로고
    • Hypoglycemia reduction and accuracy of continuous glucose monitoring
    • Kovatchev BP: Hypoglycemia reduction and accuracy of continuous glucose monitoring. Diabetes Technol Ther 2015; 17:530-533.
    • (2015) Diabetes Technol Ther , vol.17 , pp. 530-533
    • Kovatchev, B.P.1
  • 12
    • 85012980073 scopus 로고    scopus 로고
    • Nonadjunctive use of continuous glucose monitoring for diabetes treatment decisions
    • Castle JR, Jacobs PG: Nonadjunctive use of continuous glucose monitoring for diabetes treatment decisions. J Diabetes Sci Technol 2016;10:1169-1173
    • (2016) J Diabetes Sci Technol , vol.10 , pp. 1169-1173
    • Castle, J.R.1    Jacobs, P.G.2
  • 13
    • 84938562819 scopus 로고    scopus 로고
    • Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm
    • Bailey TS, Chang A, Christiansen M. Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm. J Diabetes Sci Technol 2015;9:209-214.
    • (2015) J Diabetes Sci Technol , vol.9 , pp. 209-214
    • Bailey, T.S.1    Chang, A.2    Christiansen, M.3
  • 14
    • 84938590057 scopus 로고    scopus 로고
    • Hypoglycemic accuracy and improved low glucose alerts of the latest dexcom G4 platinum continuous glucose monitoring system
    • Peyser TA, Nakamura K, Price D, et al.: Hypoglycemic accuracy and improved low glucose alerts of the latest dexcom G4 platinum continuous glucose monitoring system. Diabetes Technol Ther 2015;17:548-554.
    • (2015) Diabetes Technol Ther , vol.17 , pp. 548-554
    • Peyser, T.A.1    Nakamura, K.2    Price, D.3
  • 15
    • 84897894674 scopus 로고    scopus 로고
    • The oral minimal model method
    • Cobelli C, Dalla Man C, Toffolo G, et al.: The oral minimal model method. Diabetes 2014;64:1203-1213.
    • (2014) Diabetes , vol.64 , pp. 1203-1213
    • Cobelli, C.1    Dalla Man, C.2    Toffolo, G.3
  • 16
    • 85029275268 scopus 로고    scopus 로고
    • Incorporation of intra-day variability into the UVA/Padova type 1 diabetes simulator
    • Visentin R, Dalla Man C, Kovatchev BP, Cobelli C: Incorporation of intra-day variability into the UVA/Padova type 1 diabetes simulator. Diabetes Technol Ther 2015;17: A52-A53.
    • (2015) Diabetes Technol Ther , vol.17 , pp. A52-A53
    • Visentin, R.1    Dalla Man, C.2    Kovatchev, B.P.3    Cobelli, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.