메뉴 건너뛰기




Volumn 105, Issue 1, 2017, Pages 274-283

Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering

Author keywords

3D printing; graphene; hydroxyapatite; neurogenesis; osteogenesis

Indexed keywords

BIOLOGICAL MATERIALS; BIOMATERIALS; CELL CULTURE; GENE EXPRESSION; GRAPHENE; HYBRID MATERIALS; HYDROXYAPATITE; PRINTING; STEM CELLS; TISSUE; TISSUE ENGINEERING;

EID: 84996939011     PISSN: 15493296     EISSN: 15524965     Source Type: Journal    
DOI: 10.1002/jbm.a.35684     Document Type: Article
Times cited : (102)

References (32)
  • 1
    • 84870049108 scopus 로고    scopus 로고
    • A review of rapid prototyped surgical guides for patient-specific total knee replacement
    • Krishnan SP, Dawood A, Richards R, Henckel J, Hart AJ. A review of rapid prototyped surgical guides for patient-specific total knee replacement. J Bone Joint Surg-Br 2012; 94:1457–1461.
    • (2012) J Bone Joint Surg-Br , vol.94 , pp. 1457-1461
    • Krishnan, S.P.1    Dawood, A.2    Richards, R.3    Henckel, J.4    Hart, A.J.5
  • 2
    • 77953620711 scopus 로고    scopus 로고
    • Innovative procedure for computer-assisted genioplasty: Three-dimensional cephalometry, rapid-prototyping model and surgical splint
    • Olszewski R, Tranduy K, Reychler H. Innovative procedure for computer-assisted genioplasty: Three-dimensional cephalometry, rapid-prototyping model and surgical splint. Int J Oral Maxillofac Surg 2010; 39:721–724.
    • (2010) Int J Oral Maxillofac Surg , vol.39 , pp. 721-724
    • Olszewski, R.1    Tranduy, K.2    Reychler, H.3
  • 3
    • 84355161961 scopus 로고    scopus 로고
    • The future of dental devices is digital
    • van Noort R. The future of dental devices is digital. Dent Mater 2012; 28:3–12.
    • (2012) Dent Mater , vol.28 , pp. 3-12
    • van Noort, R.1
  • 4
    • 84931022478 scopus 로고    scopus 로고
    • 3D modeling, custom implants and its future perspectives in craniofacial surgery
    • Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg 2014; 4:9–18.
    • (2014) Ann Maxillofac Surg , vol.4 , pp. 9-18
    • Parthasarathy, J.1
  • 5
    • 84864274171 scopus 로고    scopus 로고
    • An improved methodology for design of custom-made hip prostheses to be fabricated using additive manufacturing technologies
    • Rahmati S, Abbaszadeh F, Farahmand F. An improved methodology for design of custom-made hip prostheses to be fabricated using additive manufacturing technologies. Rapid Prototyping J 2012; 18:389–400.
    • (2012) Rapid Prototyping J , vol.18 , pp. 389-400
    • Rahmati, S.1    Abbaszadeh, F.2    Farahmand, F.3
  • 8
    • 0033181210 scopus 로고    scopus 로고
    • Rapid prototyping technology in medicine - Basics and applications
    • Petzold R, Zeilhofer HF, Kalender WA. Rapid prototyping technology in medicine - Basics and applications. Comput Med Imaging Graph 1999; 23:277–284.
    • (1999) Comput Med Imaging Graph , vol.23 , pp. 277-284
    • Petzold, R.1    Zeilhofer, H.F.2    Kalender, W.A.3
  • 9
    • 84959453884 scopus 로고    scopus 로고
    • Advancing the field of 3D biomaterial printing
    • Jakus AE RLR., Shah RN, Advancing the field of 3D biomaterial printing. Biomed Mater 2016; 11.
    • (2016) Biomed Mater , vol.11
    • Jakus, A.E.R.L.R.1    Shah, R.N.2
  • 10
    • 84923829773 scopus 로고    scopus 로고
    • A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels
    • Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 2015; 27:1607–1614.
    • (2015) Adv Mater , vol.27 , pp. 1607-1614
    • Rutz, A.L.1    Hyland, K.E.2    Jakus, A.E.3    Burghardt, W.R.4    Shah, R.N.5
  • 12
    • 84928964264 scopus 로고    scopus 로고
    • Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications
    • Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 2015; 9:4636–4648.
    • (2015) ACS Nano , vol.9 , pp. 4636-4648
    • Jakus, A.E.1    Secor, E.B.2    Rutz, A.L.3    Jordan, S.W.4    Hersam, M.C.5    Shah, R.N.6
  • 14
    • 77955868224 scopus 로고    scopus 로고
    • Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds
    • Eosoly S, Brabazon D, Lohfeld S, Looney L. Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds. Acta Biomater 2010; 6:2511–2517.
    • (2010) Acta Biomater , vol.6 , pp. 2511-2517
    • Eosoly, S.1    Brabazon, D.2    Lohfeld, S.3    Looney, L.4
  • 15
    • 77955565285 scopus 로고    scopus 로고
    • Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study
    • Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study. Lancet 2010; 376:440–448.
    • (2010) Lancet , vol.376 , pp. 440-448
    • Lee, C.H.1    Cook, J.L.2    Mendelson, A.3    Moioli, E.K.4    Yao, H.5    Mao, J.J.6
  • 16
    • 84941944801 scopus 로고    scopus 로고
    • Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro
    • Shor L, Guceri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 2007; 28:5291–5297.
    • (2007) Biomaterials , vol.28 , pp. 5291-5297
    • Shor, L.1    Guceri, S.2    Wen, X.3    Gandhi, M.4    Sun, W.5
  • 17
    • 0041670837 scopus 로고    scopus 로고
    • Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends
    • Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Cha SW. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 2003; 24:3115–3123.
    • (2003) Biomaterials , vol.24 , pp. 3115-3123
    • Tan, K.H.1    Chua, C.K.2    Leong, K.F.3    Cheah, C.M.4    Cheang, P.5    Abu Bakar, M.S.6    Cha, S.W.7
  • 18
    • 0014969861 scopus 로고
    • Piezoelectric effect and growth control in bone
    • Marino AA, Becker RO. Piezoelectric effect and growth control in bone. Nature 1970; 228:473–474.
    • (1970) Nature , vol.228 , pp. 473-474
    • Marino, A.A.1    Becker, R.O.2
  • 22
    • 27744546245 scopus 로고    scopus 로고
    • The role of electrical stimulation in bone repair
    • Ciombor DM, Aaron RK. The role of electrical stimulation in bone repair. Foot Ankle Clin 2005; 10:579–593.
    • (2005) Foot Ankle Clin , vol.10 , pp. 579-593
    • Ciombor, D.M.1    Aaron, R.K.2
  • 23
    • 68849083242 scopus 로고    scopus 로고
    • Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation
    • Tsai M-T, Li W-J, Tuan RS, Chang WH. Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res 2009; 27:1169–1174.
    • (2009) J Orthop Res , vol.27 , pp. 1169-1174
    • Tsai, M.-T.1    Li, W.-J.2    Tuan, R.S.3    Chang, W.H.4
  • 24
    • 0030629712 scopus 로고    scopus 로고
    • Mechanical and electrical interactions in bone remodeling
    • Spadaro JA. Mechanical and electrical interactions in bone remodeling. Bioelectromagnetics 1997; 18:193–202.
    • (1997) Bioelectromagnetics , vol.18 , pp. 193-202
    • Spadaro, J.A.1
  • 25
    • 84948065875 scopus 로고    scopus 로고
    • Graphene-based materials in regenerative medicine
    • Ding XL, Liu HF, Fan YB. Graphene-based materials in regenerative medicine. Adv Healthcare Mater 2015; 4:1451–1468.
    • (2015) Adv Healthcare Mater , vol.4 , pp. 1451-1468
    • Ding, X.L.1    Liu, H.F.2    Fan, Y.B.3
  • 26
    • 84877780389 scopus 로고    scopus 로고
    • Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells
    • Crowder SW, Prasai D, Rath R, Balikov DA, Bae H, Bolotin KI, Sung H-J. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 2013; 5:4171–4176.
    • (2013) Nanoscale , vol.5 , pp. 4171-4176
    • Crowder, S.W.1    Prasai, D.2    Rath, R.3    Balikov, D.A.4    Bae, H.5    Bolotin, K.I.6    Sung, H.-J.7
  • 28
    • 84882241735 scopus 로고    scopus 로고
    • Graphene: An emerging material for biological tissue engineering
    • Lee SK, Kim H, Shim BS. Graphene: An emerging material for biological tissue engineering. Carbon Lett 2013; 14:63–75.
    • (2013) Carbon Lett , vol.14 , pp. 63-75
    • Lee, S.K.1    Kim, H.2    Shim, B.S.3
  • 31
    • 0028152464 scopus 로고
    • Modulation of axon diameter and neurofilaments by hypomyelinating Schwann cells in transgenic mice
    • Cole JS, Messing A, Trojanowski JQ, Lee VMY. Modulation of axon diameter and neurofilaments by hypomyelinating Schwann cells in transgenic mice. J Neurosci 1994; 14:6956–6966.
    • (1994) J Neurosci , vol.14 , pp. 6956-6966
    • Cole, J.S.1    Messing, A.2    Trojanowski, J.Q.3    Lee, V.M.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.