메뉴 건너뛰기




Volumn 9, Issue 6, 2016, Pages 649-658

Early Detection of Heart Failure Using Electronic Health Records: Practical Implications for Time before Diagnosis, Data Diversity, Data Quantity, and Data Density

Author keywords

diagnosis; electronic health records; heart failure; prevention and control; risk factors

Indexed keywords

ADRENERGIC RECEPTOR STIMULATING AGENT; ALPHA ADRENERGIC RECEPTOR BLOCKING AGENT; ANGIOTENSIN RECEPTOR ANTAGONIST; ANTIARRHYTHMIC AGENT; ANTIDIABETIC AGENT; ANTITHROMBOCYTIC AGENT; ATENOLOL; BETA ADRENERGIC RECEPTOR BLOCKING AGENT; CARDIAC GLYCOSIDE; COUMARIN ANTICOAGULANT; DIPEPTIDYL CARBOXYPEPTIDASE INHIBITOR; FUROSEMIDE; HYDROCHLOROTHIAZIDE; INSULIN; LISINOPRIL; LOOP DIURETIC AGENT; NITRIC ACID DERIVATIVE; THIAZIDE DIURETIC AGENT;

EID: 84995946079     PISSN: 19417713     EISSN: 19417705     Source Type: Journal    
DOI: 10.1161/CIRCOUTCOMES.116.002797     Document Type: Article
Times cited : (93)

References (20)
  • 5
    • 84903893026 scopus 로고    scopus 로고
    • Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record
    • Vijayakrishnan R, Steinhubl SR, Ng K, Sun J, Byrd RJ, Daar Z, Williams BA, deFilippi C, Ebadollahi S, Stewart WF, Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record. J Card Fail 2014 20 459 464. doi: 10.1016/j.cardfail.2014.03.008
    • (2014) J Card Fail , vol.20 , pp. 459-464
    • Vijayakrishnan, R.1    Steinhubl, S.R.2    Ng, K.3    Sun, J.4    Byrd, R.J.5    Daar, Z.6    Williams, B.A.7    DeFilippi, C.8    Ebadollahi, S.9    Stewart, W.F.10
  • 6
    • 84919461605 scopus 로고    scopus 로고
    • Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records
    • Byrd RJ, Steinhubl SR, Sun J, Ebadollahi S, Stewart WF, Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records. Int J Med Inform 2014 83 983 992. doi: 10.1016/j.ijmedinf.2012.12.005
    • (2014) Int J Med Inform , vol.83 , pp. 983-992
    • Byrd, R.J.1    Steinhubl, S.R.2    Sun, J.3    Ebadollahi, S.4    Stewart, W.F.5
  • 8
    • 84995913617 scopus 로고    scopus 로고
    • February 4,-2016
    • "Epic: Software." [Online]. http://www.epic.com/software-index.php. February 4,-2016
  • 10
    • 84857857236 scopus 로고    scopus 로고
    • Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction
    • Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, Wehrens XH, Deswal A, Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol 2012 59 998 1005. doi: 10.1016/j.jacc.2011.11.040
    • (2012) J Am Coll Cardiol , vol.59 , pp. 998-1005
    • Ather, S.1    Chan, W.2    Bozkurt, B.3    Aguilar, D.4    Ramasubbu, K.5    Zachariah, A.A.6    Wehrens, X.H.7    Deswal, A.8
  • 11
    • 84875243337 scopus 로고    scopus 로고
    • Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes
    • Austin PC, Tu JV, Ho JE, Levy D, Lee DS, Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. J Clin Epidemiol 2013 66 398 407. doi: 10.1016/j.jclinepi.2012.11.008
    • (2013) J Clin Epidemiol , vol.66 , pp. 398-407
    • Austin, P.C.1    Tu, J.V.2    Ho, J.E.3    Levy, D.4    Lee, D.S.5
  • 12
    • 84860795133 scopus 로고    scopus 로고
    • Classification of heart failure in the atherosclerosis risk in communities (ARIC) study: A comparison of diagnostic criteria
    • Rosamond WD, Chang PP, Baggett C, Johnson A, Bertoni AG, Shahar E, Deswal A, Heiss G, Chambless LE, Classification of heart failure in the atherosclerosis risk in communities (ARIC) study: a comparison of diagnostic criteria. Circ Heart Fail 2012 5 152 159. doi: 10.1161/CIRCHEARTFAILURE.111.963199
    • (2012) Circ Heart Fail , vol.5 , pp. 152-159
    • Rosamond, W.D.1    Chang, P.P.2    Baggett, C.3    Johnson, A.4    Bertoni, A.G.5    Shahar, E.6    Deswal, A.7    Heiss, G.8    Chambless, L.E.9
  • 14
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Brieman L, Random forests. Mach Learn 2001 45 5 32
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Brieman, L.1
  • 16
    • 84995971992 scopus 로고    scopus 로고
    • Accessed February 22, 2016
    • Welcome to Python.org. https://www.python.org/. Accessed February 22, 2016
  • 19
    • 84924295546 scopus 로고    scopus 로고
    • Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration
    • Singh A, Nadkarni G, Gottesman O, Ellis SB, Bottinger EP, Guttag JV, Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration. J Biomed Inform 2015 53 220 228. doi: 10.1016/j.jbi.2014.11.005
    • (2015) J Biomed Inform , vol.53 , pp. 220-228
    • Singh, A.1    Nadkarni, G.2    Gottesman, O.3    Ellis, S.B.4    Bottinger, E.P.5    Guttag, J.V.6
  • 20
    • 84924375509 scopus 로고    scopus 로고
    • Hypoglycemia prediction using machine learning models for patients with type 2 diabetes
    • Sudharsan B, Peeples M, Shomali M, Hypoglycemia prediction using machine learning models for patients with type 2 diabetes. J Diabetes Sci Technol 2015 9 86 90. doi: 10.1177/1932296814554260
    • (2015) J Diabetes Sci Technol , vol.9 , pp. 86-90
    • Sudharsan, B.1    Peeples, M.2    Shomali, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.