메뉴 건너뛰기




Volumn 16, Issue 11, 2016, Pages

Image based mango fruit detection, localisation and yield estimation using multiple view geometry

Author keywords

Agrivision; Computer vision; Field robotics; Fruit detection; Yield estimation

Indexed keywords

CALIBRATION; COMPUTER VISION; FARMS; FORESTRY; NAVIGATION SYSTEMS; ORCHARDS; ROBOTS;

EID: 84995783961     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s16111915     Document Type: Article
Times cited : (248)

References (39)
  • 1
    • 84871784324 scopus 로고    scopus 로고
    • Estimation of mango crop yield using image analysis–segmentation method
    • Payne, A.B.; Walsh, K.B.; Subedi, P.P.; Jarvis, D. Estimation of mango crop yield using image analysis–segmentation method. Comput. Electron. Agric. 2013, 91, 57–64.
    • (2013) Comput. Electron. Agric , vol.91 , pp. 57-64
    • Payne, A.B.1    Walsh, K.B.2    Subedi, P.P.3    Jarvis, D.4
  • 2
    • 0034473204 scopus 로고    scopus 로고
    • A survey of computer vision methods for locating fruit on trees
    • Jimenez, A.R.; Ceres, R.; Pons, J.L. A survey of computer vision methods for locating fruit on trees. Trans. Am. Soc. Agric. Eng. 2000, 43, 1911–1920.
    • (2000) Trans. Am. Soc. Agric. Eng , vol.43 , pp. 1911-1920
    • Jimenez, A.R.1    Ceres, R.2    Pons, J.L.3
  • 4
    • 84920090595 scopus 로고    scopus 로고
    • Automated Crop Yield Estimation for Apple Orchards
    • Springer: Berlin, Germany
    • Wang, Q.; Nuske, S.; Bergerman, M.; Singh, S. Automated Crop Yield Estimation for Apple Orchards. In Experimental Robotics; Springer: Berlin, Germany, 2013; pp. 745–758.
    • (2013) In Experimental Robotics , pp. 745-758
    • Wang, Q.1    Nuske, S.2    Bergerman, M.3    Singh, S.4
  • 7
    • 84993996127 scopus 로고    scopus 로고
    • Mapping almond orchard canopy volume, flowers, fruit and yield using LiDAR and vision sensors
    • Underwood, J.P.; Hung, C.; Whelan, B.; Sukkarieh, S. Mapping almond orchard canopy volume, flowers, fruit and yield using LiDAR and vision sensors. Comput. Electron. Agric. 2016, 130, 83–96.
    • (2016) Comput. Electron. Agric , vol.130 , pp. 83-96
    • Underwood, J.P.1    Hung, C.2    Whelan, B.3    Sukkarieh, S.4
  • 8
    • 84884637261 scopus 로고    scopus 로고
    • Agricultural robotics: Unmanned robotic service units in agricultural tasks
    • Cheein, F.A.A.; Carelli, R. Agricultural robotics: Unmanned robotic service units in agricultural tasks. IEEE Ind. Electron. Mag. 2013, 7, 48–58.
    • (2013) IEEE Ind. Electron. Mag , vol.7 , pp. 48-58
    • Cheein, F.A.A.1    Carelli, R.2
  • 13
    • 0742323622 scopus 로고    scopus 로고
    • Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging
    • Stajnko, D.; Lakota, M.; Hočevar, M. Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging. Comput. Electron. Agric. 2004, 42, 31–42.
    • (2004) Comput. Electron. Agric , vol.42 , pp. 31-42
    • Stajnko, D.1    Lakota, M.2    Hočevar, M.3
  • 14
    • 83455229423 scopus 로고    scopus 로고
    • Determination of the number of green apples in RGB images recorded in orchards
    • Linker, R.; Cohen, O.; Naor, A. Determination of the number of green apples in RGB images recorded in orchards. Comput. Electron. Agric. 2012, 81, 45–57.
    • (2012) Comput. Electron. Agric , vol.81 , pp. 45-57
    • Linker, R.1    Cohen, O.2    Naor, A.3
  • 15
    • 84993986971 scopus 로고    scopus 로고
    • Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards
    • Bargoti, S.; Underwood, J. Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards. J. Field Robot. 2016, in press.
    • (2016) J. Field Robot
    • Bargoti, S.1    Underwood, J.2
  • 17
    • 84982682350 scopus 로고    scopus 로고
    • DeepFruits: A Fruit Detection System Using Deep Neural Networks
    • Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222.
    • (2016) Sensors , vol.16 , pp. 1222
    • Sa, I.1    Ge, Z.2    Dayoub, F.3    Upcroft, B.4    Perez, T.5    McCool, C.6
  • 18
    • 84897696341 scopus 로고    scopus 로고
    • Modeling and calibrating visual yield estimates in vineyards
    • Springer: Berlin, Germany
    • Nuske, S.; Gupta, K.; Narasimhan, S.; Singh, S. Modeling and calibrating visual yield estimates in vineyards. In Field and Service Robotics; Springer: Berlin, Germany, 2014; pp. 343–356.
    • (2014) In Field and Service Robotics , pp. 343-356
    • Nuske, S.1    Gupta, K.2    Narasimhan, S.3    Singh, S.4
  • 23
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • Kuhn, H.W. The Hungarian method for the assignment problem. Naval Res. Logist. Q. 1955, 2, 83–97.
    • (1955) Naval Res. Logist. Q , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 24
    • 84955213128 scopus 로고    scopus 로고
    • LiDAR-based tree recognition and platform localization in orchards
    • Underwood, J.P.; Jagbrant, G.; Nieto, J.I.; Sukkarieh, S. LiDAR-based tree recognition and platform localization in orchards. J. Field Robot. 2015, 32, 1056–1074.
    • (2015) J. Field Robot , vol.32 , pp. 1056-1074
    • Underwood, J.P.1    Jagbrant, G.2    Nieto, J.I.3    Sukkarieh, S.4
  • 26
    • 84995742699 scopus 로고    scopus 로고
    • (accessed on 14 November 2016)
    • Allied Vision. Prosilica GT3300C. Available online: https://www.alliedvision.com/en/products/cameras/ detail/ProsilicaGT/3300.html (accessed on 14 November 2016).
  • 27
    • 84995775189 scopus 로고    scopus 로고
    • (accessed on 14 November 2016)
    • Kowa. LM8CX. Available online: http://www.kowa-europe.com/lenses/en/LM8XC.30107.php (accessed on 14 November 2016).
  • 28
    • 84995741666 scopus 로고    scopus 로고
    • (accessed on 14 November 2016)
    • Excelitas. MVS-5002. Available online: http://www.excelitas.com/Lists/Industrial%20Lighting/DispForm. aspx?ID=14 (accessed on 14 November 2016).
  • 29
    • 84995779850 scopus 로고    scopus 로고
    • (accessed on 14 November 2016)
    • Velodyne. HDL64E. Available online: http://velodynelidar.com/hdl-64e.html (accessed on 14 November 2016).
  • 30
    • 84995734921 scopus 로고    scopus 로고
    • (accessed on 14 November 2016)
    • Novatel. IMU-CPT. Available online: http://www.novatel.com/products/span-gnss-inertial-systems/ span-imus/imu-cpt/ (accessed on 14 November 2016).
  • 33
    • 84995762548 scopus 로고    scopus 로고
    • (accessed on 14 November 2016)
    • Suchet Bargoti. Pychet Labeller. Available online: https://github.com/acfr/pychetlabeller (accessed on 14 November 2016).
  • 35
    • 84955197448 scopus 로고    scopus 로고
    • A Pipeline for Trunk Detection in Trellis Structured Apple Orchards
    • Bargoti, S.; Underwood, J.P.; Nieto, J.I.; Sukkarieh, S. A Pipeline for Trunk Detection in Trellis Structured Apple Orchards. J. Field Robot. 2015, 32, 1075–1094.
    • (2015) J. Field Robot , vol.32 , pp. 1075-1094
    • Bargoti, S.1    Underwood, J.P.2    Nieto, J.I.3    Sukkarieh, S.4
  • 37
    • 0002223982 scopus 로고
    • Algorithms for the assignment and transportation problems
    • Munkres, J. Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 1957, 5, 32–38.
    • (1957) J. Soc. Ind. Appl. Math , vol.5 , pp. 32-38
    • Munkres, J.1
  • 38
    • 84995742693 scopus 로고    scopus 로고
    • (accessed on 14 November 2016)
    • Clapper, B.M. Munkres 1.0.8. Available online: https://pypi.python.org/pypi/munkres (accessed on 14 November 2016).
    • Munkres 1.0.8
    • Clapper, B.M.1
  • 39
    • 75749148780 scopus 로고    scopus 로고
    • Error modeling and calibration of exteroceptive sensors for accurate mapping applications
    • Underwood, J.P.; Hill, A.; Peynot, T.; Scheding, S.J. Error modeling and calibration of exteroceptive sensors for accurate mapping applications. J. Field Robot. 2010, 27, 2–20.
    • (2010) J. Field Robot , vol.27 , pp. 2-20
    • Underwood, J.P.1    Hill, A.2    Peynot, T.3    Scheding, S.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.