-
1
-
-
84916624817
-
Research development on sodium-ion batteries
-
[1] Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S., Research development on sodium-ion batteries. Chem. Rev. 114 (2014), 11636–11682.
-
(2014)
Chem. Rev.
, vol.114
, pp. 11636-11682
-
-
Yabuuchi, N.1
Kubota, K.2
Dahbi, M.3
Komaba, S.4
-
2
-
-
84924528297
-
Towards greener and more sustainable batteries for electrical energy storage
-
[2] Larcher, D., Tarascon, J.M., Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7 (2015), 19–29.
-
(2015)
Nat. Chem.
, vol.7
, pp. 19-29
-
-
Larcher, D.1
Tarascon, J.M.2
-
3
-
-
84882594139
-
Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
-
[3] Pan, H., Hu, Y.S., Chen, L., Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6 (2013), 2338–2360.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2338-2360
-
-
Pan, H.1
Hu, Y.S.2
Chen, L.3
-
4
-
-
84884476433
-
A new high-energy cathode for a Na-ion battery with ultrahigh stability
-
[4] Park, Y.U., Seo, D.H., Kwon, H.S., Kim, B., Kim, J., Kim, H., Kim, I., Yoo, H.L., Kang, K., Kang, K., A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 135 (2013), 13870–138787.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 13870-138787
-
-
Park, Y.U.1
Seo, D.H.2
Kwon, H.S.3
Kim, B.4
Kim, J.5
Kim, H.6
Kim, I.7
Yoo, H.L.8
Kang, K.9
Kang, K.10
-
5
-
-
84867297718
-
Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries
-
[5] Kim, S.W., Seo, D.H., Ma, X., Ceder, G., Kang, K., Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2 (2012), 710–721.
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 710-721
-
-
Kim, S.W.1
Seo, D.H.2
Ma, X.3
Ceder, G.4
Kang, K.5
-
6
-
-
79960898109
-
Challenges for Na-ion negative electrodes
-
[6] Chevrier, V.L., Ceder, G., Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158 (2011), 1011–1014.
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. 1011-1014
-
-
Chevrier, V.L.1
Ceder, G.2
-
7
-
-
67649240275
-
Combination of lightweight elements and nanostructured materials for batteries
-
[7] Chen, J., Cheng, F.Y., Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42 (2009), 713–723.
-
(2009)
Acc. Chem. Res.
, vol.42
, pp. 713-723
-
-
Chen, J.1
Cheng, F.Y.2
-
8
-
-
84910132404
-
Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-Ion batteries
-
[8] Song, J., Yu, Z., Gordin, M.L., Hu, S., Yi, R., Tang, D., Walter, T., Regula, M., Choi, D., Li, X., Manivannan, A., Wang, D.H., Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-Ion batteries. Nano Lett. 14 (2014), 6329–6335.
-
(2014)
Nano Lett.
, vol.14
, pp. 6329-6335
-
-
Song, J.1
Yu, Z.2
Gordin, M.L.3
Hu, S.4
Yi, R.5
Tang, D.6
Walter, T.7
Regula, M.8
Choi, D.9
Li, X.10
Manivannan, A.11
Wang, D.H.12
-
9
-
-
84876516715
-
Tin-coated viral nanoforests as sodium-ion battery anodes
-
[9] Liu, Y., Xu, Y., Zhu, Y., Culver, J., Lundgren, C., Xu, K., Wang, C., Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7 (2013), 3627–3634.
-
(2013)
ACS Nano
, vol.7
, pp. 3627-3634
-
-
Liu, Y.1
Xu, Y.2
Zhu, Y.3
Culver, J.4
Lundgren, C.5
Xu, K.6
Wang, C.7
-
10
-
-
84929922811
-
3@ C nanocomposite as high-performance anode material of Na-ion batteries
-
3@ C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater., 5, 2015, 1401123.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1401123
-
-
Zhang, N.1
Han, X.2
Liu, Y.3
Hu, X.4
Zhao, Q.5
Chen, J.6
-
11
-
-
84906705989
-
2 to orthorhombic-SnS
-
2 to orthorhombic-SnS. ACS Nano 8 (2014), 8323–8333.
-
(2014)
ACS Nano
, vol.8
, pp. 8323-8333
-
-
Zhou, T.1
Pang, W.K.2
Zhang, C.3
Yang, J.4
Chen, Z.5
Liu, H.K.6
Guo, Z.7
-
12
-
-
84923327791
-
2-decorated three-dimensional reduced graphene oxide microspheres
-
2-decorated three-dimensional reduced graphene oxide microspheres. Nanoscale 7 (2015), 3965–3970.
-
(2015)
Nanoscale
, vol.7
, pp. 3965-3970
-
-
Choi, S.H.1
Kang, Y.C.2
-
13
-
-
84873688493
-
Metal dichalcogenide nanosheets: preparation, properties and applications
-
[13] Huang, X., Zeng, Z.Y., Zhang, H., Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42 (2013), 1934–1946.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 1934-1946
-
-
Huang, X.1
Zeng, Z.Y.2
Zhang, H.3
-
14
-
-
85000453364
-
2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries
-
2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 126 (2014), 13008–13012.
-
(2014)
Angew. Chem. Int. Ed.
, vol.126
, pp. 13008-13012
-
-
Hu, Z.1
Wang, L.X.2
Zhang, K.3
Wang, J.B.4
Cheng, F.Y.5
Tao, Z.L.6
Chen, J.7
-
15
-
-
84926293084
-
2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries
-
2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep., 5, 2015, 9254.
-
(2015)
Sci. Rep.
, vol.5
, pp. 9254
-
-
Xiong, X.1
Luo, W.2
Hu, X.3
Chen, C.4
Qie, L.5
Hou, D.6
Huang, Y.7
-
16
-
-
84930333065
-
Two-dimensional transition metal dichalcogenide nanosheet-based composites
-
[16] Tan, C., Zhang, H., Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44 (2015), 2713–2731.
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 2713-2731
-
-
Tan, C.1
Zhang, H.2
-
18
-
-
84925632044
-
2 nanosheets as anode materials for sodium-ion batteries with superior performance
-
2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater., 5, 2015, 1401205.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1401205
-
-
Su, D.1
Dou, S.2
Wang, G.3
-
20
-
-
85027918537
-
2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage
-
2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv. Mater. 27 (2015), 3687–3695.
-
(2015)
Adv. Mater.
, vol.27
, pp. 3687-3695
-
-
Jiang, H.1
Ren, D.Y.2
Wang, H.F.3
Hu, Y.J.4
Guo, S.J.5
Yuan, H.Y.6
Hu, P.J.7
Zhang, L.8
Li, C.Z.9
-
22
-
-
84960080557
-
2 nanosheets inlayed into carbon frameworks for superior lithium ion batteries
-
2 nanosheets inlayed into carbon frameworks for superior lithium ion batteries. ACS Sustain. Chem. Eng. 4 (2016), 1148–1153.
-
(2016)
ACS Sustain. Chem. Eng.
, vol.4
, pp. 1148-1153
-
-
Ren, D.Y.1
Hu, Y.J.2
Jiang, H.B.3
Deng, Z.N.4
Petr, S.5
Jiang, H.6
Li, C.Z.7
-
24
-
-
84893860567
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium Storage
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium Storage. Angew. Chem. Int. Ed. 53 (2014), 2152–2156.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 2152-2156
-
-
Zhu, C.B.1
Mu, X.K.2
Aken, P.A.3
Yu, Y.4
Maier, J.5
-
25
-
-
85027922113
-
2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties
-
2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 25 (2015), 1780–1788.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 1780-1788
-
-
Choi, S.H.1
Ko, Y.N.2
Lee, J.K.3
Kang, Y.C.4
-
26
-
-
84919881008
-
2 nanosheets with expanded spacing of (0 0 2) plane on carbon nanotubes for high-performance sodium-ion battery anodes
-
2 nanosheets with expanded spacing of (0 0 2) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces 6 (2014), 21880–21885.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 21880-21885
-
-
Zhang, S.1
Yu, X.2
Yu, H.3
Chen, Y.4
Gao, P.5
Li, C.6
Zhu, L.C.7
-
27
-
-
84896732875
-
2/graphene composite paper for sodium-ion battery electrodes
-
2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8 (2014), 1759–1770.
-
(2014)
ACS Nano
, vol.8
, pp. 1759-1770
-
-
David, L.1
Bhandavat, R.2
Singh, G.3
-
28
-
-
85027948562
-
2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface
-
2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25 (2015), 1393–1403.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 1393-1403
-
-
Xie, X.1
Ao, Z.2
Su, D.3
Zhang, J.4
Wang, G.5
-
29
-
-
84945931133
-
Perforated metal oxide-carbon nanotube composite microspheres with enhanced lithium-ion storage properties
-
[29] Choi, S.H., Lee, J.H., Kang, Y.C., Perforated metal oxide-carbon nanotube composite microspheres with enhanced lithium-ion storage properties. ACS Nano 9 (2015), 10173–10185.
-
(2015)
ACS Nano
, vol.9
, pp. 10173-10185
-
-
Choi, S.H.1
Lee, J.H.2
Kang, Y.C.3
-
30
-
-
84910107813
-
4/graphene nanowires as a high-rate lithium storage anode
-
4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 14 (2014), 6250–6256.
-
(2014)
Nano Lett.
, vol.14
, pp. 6250-6256
-
-
An, Q.1
Lv, F.2
Liu, Q.3
Han, C.4
Zhao, K.5
Sheng, J.6
Wei, Q.7
Yan, M.8
Mai, L.9
-
31
-
-
85027929324
-
Sn-based nanoparticles encapsulated in a porous 3D graphene network: advanced anodes for high-rate and long life Li-ion batteries
-
[31] Wu, C., Maier, J., Yu, Y., Sn-based nanoparticles encapsulated in a porous 3D graphene network: advanced anodes for high-rate and long life Li-ion batteries. Adv. Funct. Mater. 25 (2015), 3488–3496.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 3488-3496
-
-
Wu, C.1
Maier, J.2
Yu, Y.3
-
32
-
-
84869190860
-
Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries
-
[32] Thakur, M., Sinsabaugh, S.L., Isaacson, M.J., Wong, M.S., Biswal, S.L., Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci. Rep., 2, 2012, 795.
-
(2012)
Sci. Rep.
, vol.2
, pp. 795
-
-
Thakur, M.1
Sinsabaugh, S.L.2
Isaacson, M.J.3
Wong, M.S.4
Biswal, S.L.5
-
33
-
-
84936852709
-
2–amorphous carbon composite with open macropores as battery electrode
-
2–amorphous carbon composite with open macropores as battery electrode. ChemSusChem 8 (2015), 2260–2267.
-
(2015)
ChemSusChem
, vol.8
, pp. 2260-2267
-
-
Choi, S.H.1
Kang, Y.C.2
-
34
-
-
84949895035
-
2 nanosheets grown on metal-organic framework-derived microporous nitrogen-doped carbon dodecahedrons
-
2 nanosheets grown on metal-organic framework-derived microporous nitrogen-doped carbon dodecahedrons. Chem. Eng. J. 288 (2016), 179–184.
-
(2016)
Chem. Eng. J.
, vol.288
, pp. 179-184
-
-
Wang, H.Y.1
Ren, D.Y.2
Zhu, Z.J.3
Saha, P.4
Jiang, H.5
Li, C.Z.6
-
36
-
-
84958543375
-
2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries
-
2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22 (2016), 27–37.
-
(2016)
Nano Energy
, vol.22
, pp. 27-37
-
-
Shi, Z.T.1
Kang, W.P.2
Xu, J.3
Sun, Y.W.4
Jiang, M.5
Ng, T.W.6
Xue, H.T.7
Yu, D.Y.W.8
Zhang, W.J.9
Lee, C.S.10
-
37
-
-
84876590946
-
2-graphene composites as anode materials of Li-ion batteries
-
2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A 1 (2013), 2202–2210.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 2202-2210
-
-
Wang, Z.1
Chen, T.2
Chen, W.3
Chang, K.4
Ma, L.5
Huang, G.6
Chen, D.7
Lee, J.Y.8
-
38
-
-
84950312516
-
2 nanocages as a lithium ion battery anode material
-
2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 4 (2016), 51–58.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 51-58
-
-
Zuo, X.X.1
Chang, K.2
Zhao, J.3
Xie, Z.Z.4
Tang, H.W.5
Li, B.6
Chang, Z.R.7
-
39
-
-
84939642661
-
2 architectures supported on graphene foam/carbon nanotube hybrid films: highly integrated frameworks with ideal contact for superior lithium storage
-
2 architectures supported on graphene foam/carbon nanotube hybrid films: highly integrated frameworks with ideal contact for superior lithium storage. J. Mater. Chem. A 3 (2015), 17534–17543.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 17534-17543
-
-
Wang, J.1
Liu, J.L.2
Luo, J.S.3
Liang, P.4
Chao, D.L.5
Lai, L.F.6
Lin, J.Y.7
Shen, Z.X.8
-
40
-
-
84938254600
-
2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage
-
2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage. J. Power Sources 296 (2015), 392–399.
-
(2015)
J. Power Sources
, vol.296
, pp. 392-399
-
-
Xie, D.1
Tang, W.J.2
Xia, X.H.3
Wang, D.H.4
Zhou, D.5
Shi, F.6
Wang, X.L.7
Gu, C.D.8
Tu, J.P.9
-
42
-
-
84922817182
-
Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes
-
[42] Lacey, S.D., Wan, J.Y., von Wald Cresce, A., Russell, S.M., Dai, J.Q., Bao, W.Z., Xu, K., Hu, L.B., Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett. 15 (2015), 1018–1024.
-
(2015)
Nano Lett.
, vol.15
, pp. 1018-1024
-
-
Lacey, S.D.1
Wan, J.Y.2
von Wald Cresce, A.3
Russell, S.M.4
Dai, J.Q.5
Bao, W.Z.6
Xu, K.7
Hu, L.B.8
-
43
-
-
77956958084
-
Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions
-
[43] Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R., Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22 (2010), 170–192.
-
(2010)
Adv. Mater.
, vol.22
, pp. 170-192
-
-
Cabana, J.1
Monconduit, L.2
Larcher, D.3
Palacín, M.R.4
-
45
-
-
84929497748
-
2 nanosheets into a novel worm-like structure and its application in sodium batteries
-
2 nanosheets into a novel worm-like structure and its application in sodium batteries. J. Mater. Chem. A 3 (2015), 9932–9937.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 9932-9937
-
-
Xu, M.W.1
Yi, F.L.2
Niu, Y.B.3
Xie, J.L.4
Hou, J.K.5
Liu, S.G.6
Hu, W.H.7
Li, Y.T.8
Li, C.M.9
-
46
-
-
84918821766
-
2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance
-
2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim. Acta 153 (2015), 55–61.
-
(2015)
Electrochim. Acta
, vol.153
, pp. 55-61
-
-
Qin, W.1
Chen, T.Q.2
Pan, L.K.3
Niu, L.Y.4
Hu, B.W.5
Li, D.S.6
Li, J.L.7
Sun, Z.8
|