-
1
-
-
38949102073
-
Building better batteries
-
Armand M., Tarascon J.M. Building better batteries. Nature 2008, 451:652-657.
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
2
-
-
7544234502
-
What are batteries, fuel cells, and supercapacitors
-
Winter M., Brodd R.J. What are batteries, fuel cells, and supercapacitors. Chem. Rev. 2004, 104:4245-4270.
-
(2004)
Chem. Rev.
, vol.104
, pp. 4245-4270
-
-
Winter, M.1
Brodd, R.J.2
-
3
-
-
85027918537
-
2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage
-
2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv. Mater. 2015, 27:3687-3695.
-
(2015)
Adv. Mater.
, vol.27
, pp. 3687-3695
-
-
Jiang, H.1
Ren, D.Y.2
Wang, H.F.3
Hu, Y.J.4
Guo, S.J.5
Yuan, H.Y.6
Hu, P.J.7
Zhang, L.8
Li, C.Z.9
-
5
-
-
84877709077
-
Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices
-
Gao M.R., Xu Y.D., Jiang J., Yu S.H. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42:2986-3017.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 2986-3017
-
-
Gao, M.R.1
Xu, Y.D.2
Jiang, J.3
Yu, S.H.4
-
6
-
-
79959807824
-
2/graphene composites with excellent electrochemical performances for lithium ion batteries
-
2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5:4720-4728.
-
(2011)
ACS Nano
, vol.5
, pp. 4720-4728
-
-
Chang, K.1
Chen, W.X.2
-
7
-
-
84856690904
-
Molybdenum sulfides-efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution
-
Laursen A.B., Kegnaes S., Dahl S., Chorkendorff I. Molybdenum sulfides-efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5:5577-5591.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 5577-5591
-
-
Laursen, A.B.1
Kegnaes, S.2
Dahl, S.3
Chorkendorff, I.4
-
8
-
-
84928955081
-
2 anchored on carbon nanosheet for lithium-ion battery anode
-
2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9:3837-3848.
-
(2015)
ACS Nano
, vol.9
, pp. 3837-3848
-
-
Zhou, J.W.1
Qin, J.2
Zhang, X.3
Shi, C.S.4
Liu, E.Z.5
Li, J.J.6
Zhao, N.Q.7
He, C.N.8
-
9
-
-
84874036664
-
2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries
-
2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 2013, 25:1180-1184.
-
(2013)
Adv. Mater.
, vol.25
, pp. 1180-1184
-
-
Yang, L.C.1
Wang, S.N.2
Mao, J.J.3
Deng, J.W.4
Gao, Q.S.5
Tang, Y.6
Schmidt, O.G.7
-
10
-
-
84880270219
-
Self-assembly of hierarchical MoSx/CNT nanocomposites (2
-
Shi Y.M., Wang Y., Wong J.I., Tan A.Y.S., Hsu C.L., Li L.J., Lu Y.C., Yang H.Y. Self-assembly of hierarchical MoSx/CNT nanocomposites (2
-
(2013)
Sci. Rep.
, vol.3
, pp. 2169
-
-
Shi, Y.M.1
Wang, Y.2
Wong, J.I.3
Tan, A.Y.S.4
Hsu, C.L.5
Li, L.J.6
Lu, Y.C.7
Yang, H.Y.8
-
11
-
-
80051684307
-
2/graphene nanocomposites with lithium
-
2/graphene nanocomposites with lithium. Adv. Funct. Mater. 2011, 21:2840-2846.
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 2840-2846
-
-
Xiao, J.1
Wang, X.J.2
Yang, X.Q.3
Xun, S.D.4
Liu, G.5
Koech, P.K.6
Liu, J.7
Lemmon, J.P.8
-
12
-
-
80755125655
-
2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials
-
2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11:4826-4830.
-
(2011)
Nano Lett.
, vol.11
, pp. 4826-4830
-
-
Hwang, H.1
Kim, H.2
Cho, J.3
-
15
-
-
84896732875
-
2/graphene composite paper for sodium-ion battery electrodes
-
2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8:1759-1770.
-
(2014)
ACS Nano
, vol.8
, pp. 1759-1770
-
-
David, L.1
Bhandavat, R.2
Singh, G.3
-
16
-
-
84910622064
-
2nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution, journal of power sources
-
2nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution, journal of power sources. J. Power Sources 2015, 275:588-594.
-
(2015)
J. Power Sources
, vol.275
, pp. 588-594
-
-
Liu, N.1
Yang, L.C.2
Wang, S.N.3
Zhong, Z.W.4
He, S.N.5
Yang, X.Y.6
Gao, Q.S.7
Tang, Y.8
-
17
-
-
84907141982
-
2 nanosheets on a CNT backboneforhigh-rate and long-life lithium-ion batteries
-
2 nanosheets on a CNT backboneforhigh-rate and long-life lithium-ion batteries. RSC Adv. 2014, 4:40368-40372.
-
(2014)
RSC Adv.
, vol.4
, pp. 40368-40372
-
-
Ren, D.Y.1
Jiang, H.2
Hu, Y.J.3
Zhang, L.4
Li, C.Z.5
-
18
-
-
84887370437
-
Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium
-
Huang G.C., Chen T., Chen W.X., Wang Z., Chang K., Ma L., Huang F.H., Chen D.Y., Lee J.Y. Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 2013, 9:3693-3703.
-
(2013)
Small
, vol.9
, pp. 3693-3703
-
-
Huang, G.C.1
Chen, T.2
Chen, W.X.3
Wang, Z.4
Chang, K.5
Ma, L.6
Huang, F.H.7
Chen, D.Y.8
Lee, J.Y.9
-
19
-
-
84900455068
-
Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: microstructure and electrochemical lithium storage
-
Ma L., Huang G.C., Chen W.X., Wang Z., Ye J.B., Li H.Y., Chen D.Y., Lee J.Y. Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: microstructure and electrochemical lithium storage. J. Power Sources 2014, 264:262-271.
-
(2014)
J. Power Sources
, vol.264
, pp. 262-271
-
-
Ma, L.1
Huang, G.C.2
Chen, W.X.3
Wang, Z.4
Ye, J.B.5
Li, H.Y.6
Chen, D.Y.7
Lee, J.Y.8
-
20
-
-
80054932141
-
2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries
-
2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J. Mater. Chem. 2011, 21:17175-17184.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 17175-17184
-
-
Chang, K.1
Chen, W.X.2
-
21
-
-
84893860567
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 2014, 53:2152-2156.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 2152-2156
-
-
Zhu, C.B.1
Mu, X.K.2
van Aken, P.A.3
Yu, Y.4
Maier, J.5
-
22
-
-
84908007126
-
2@ graphene nanocables: towards high performance electrode materials for lithium ion batteries
-
2@ graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy Environ. Sci. 2014, 7:3320-3325.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3320-3325
-
-
Kong, D.B.1
He, H.Y.2
Song, Q.3
Wang, B.4
Lv, W.5
Yang, Q.H.6
Zhi, L.J.7
-
23
-
-
84930705750
-
Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance
-
Wang H.G., Yuan S., Ma D.L., Zhang X.B., Yan J.M. Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8:1660-1681.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 1660-1681
-
-
Wang, H.G.1
Yuan, S.2
Ma, D.L.3
Zhang, X.B.4
Yan, J.M.5
-
24
-
-
79959702701
-
Promising carbons for supercapacitors derived from fungi
-
Zhu H., Wang X.L., Yang F., Yang X.R. Promising carbons for supercapacitors derived from fungi. Adv. Mater. 2011, 23:2745-2748.
-
(2011)
Adv. Mater.
, vol.23
, pp. 2745-2748
-
-
Zhu, H.1
Wang, X.L.2
Yang, F.3
Yang, X.R.4
-
25
-
-
84920698895
-
Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors
-
Long C.L., Chen X., Jiang L.L., Zhi L.J., Fan Z.J. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 2015, 12:141-151.
-
(2015)
Nano Energy
, vol.12
, pp. 141-151
-
-
Long, C.L.1
Chen, X.2
Jiang, L.L.3
Zhi, L.J.4
Fan, Z.J.5
-
26
-
-
80755125655
-
2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials
-
2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11:4826-4830.
-
(2011)
Nano Lett.
, vol.11
, pp. 4826-4830
-
-
Hwang, H.1
Kim, H.2
Cho, J.3
-
27
-
-
84858182487
-
2 thin layers on insulating substrates
-
2 thin layers on insulating substrates. Nano Lett. 2012, 12:1538-1544.
-
(2012)
Nano Lett.
, vol.12
, pp. 1538-1544
-
-
Liu, K.K.1
Zhang, W.J.2
Lee, Y.H.3
Lin, Y.C.4
Chang, M.T.5
Su, C.Y.6
Chang, C.S.7
Li, H.8
Shi, Y.M.9
Zhang, H.10
Lai, C.S.11
Li, L.J.12
-
29
-
-
84872725300
-
2 nanosheets on carbon nanotubes for high-performance lithium ion batteries
-
2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans. 2013, 42:2399-2405.
-
(2013)
Dalton Trans.
, vol.42
, pp. 2399-2405
-
-
Park, S.K.1
Yu, S.H.2
Woo, S.3
Quan, B.4
Lee, D.C.5
Kim, M.K.6
Sung, Y.E.7
Piao, Y.Z.8
-
30
-
-
0036165131
-
Intercalation chemistry of molybdenum disulfide
-
Benavente E., Santa Ana M.A., Mendizábal F., González G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 2002, 224:87.
-
(2002)
Coord. Chem. Rev.
, vol.224
, pp. 87
-
-
Benavente, E.1
Santa Ana, M.A.2
Mendizábal, F.3
González, G.4
-
31
-
-
84155162555
-
2 electrode material
-
2 electrode material. Microporous Mesoporous Mater. 2012, 151:418-423.
-
(2012)
Microporous Mesoporous Mater.
, vol.151
, pp. 418-423
-
-
Fang, X.P.1
Yu, X.Q.2
Liao, S.F.3
Shi, Y.F.4
Hu, Y.S.5
Wang, Z.X.6
Stucky, G.D.7
Chen, L.Q.8
|