-
1
-
-
84953792301
-
Flexible nanogenerators for energy harvesting and self-powered electronics
-
[1] Fan, F.R., Tang, W., Wang, Z.L., Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater., 2016, 10.1002/adma.201504299.
-
(2016)
Adv. Mater.
-
-
Fan, F.R.1
Tang, W.2
Wang, Z.L.3
-
2
-
-
56449115420
-
Powering MEMS portable devices – a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems
-
[2] Cook-Chennault, K.A., Thambi, N., Sastry, A.M., Powering MEMS portable devices – a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct., 17, 2008, 043001, 10.1088/0964-1726/17/4/043001.
-
(2008)
Smart Mater. Struct.
, vol.17
, pp. 043001
-
-
Cook-Chennault, K.A.1
Thambi, N.2
Sastry, A.M.3
-
3
-
-
68949194549
-
Review: environmental friendly lead-free piezoelectric materials
-
[3] Panda, P.K., Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44 (2009), 5049–5062, 10.1007/s10853-009-3643-0.
-
(2009)
J. Mater. Sci.
, vol.44
, pp. 5049-5062
-
-
Panda, P.K.1
-
4
-
-
80052209748
-
Self-powered environmental sensor system driven by nanogenerators
-
[4] Lee, M., Bae, J., Lee, J., Lee, C.-S., Hong, S., Wang, Z.L., Self-powered environmental sensor system driven by nanogenerators. Energy Environ. Sci., 4, 2011, 3359, 10.1039/c1ee01558c.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3359
-
-
Lee, M.1
Bae, J.2
Lee, J.3
Lee, C.-S.4
Hong, S.5
Wang, Z.L.6
-
5
-
-
56749177472
-
Towards self-powered nanosystems: from nanogenerators to nanopiezotronics
-
[5] Wang, Z.L., Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18 (2008), 3553–3567, 10.1002/adfm.200800541.
-
(2008)
Adv. Funct. Mater.
, vol.18
, pp. 3553-3567
-
-
Wang, Z.L.1
-
6
-
-
84910123064
-
Self-powered fully-flexible light-emitting system enabled by flexible energy harvester
-
[6] Jeong, C.K., Park, K.-I., Son, J.H., Hwang, G.-T., Lee, S.H., Park, D.Y., Lee, H.E., Lee, H.K., Byun, M., Lee, K.J., Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 7 (2014), 4035–4043, 10.1039/C4EE02435D.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 4035-4043
-
-
Jeong, C.K.1
Park, K.-I.2
Son, J.H.3
Hwang, G.-T.4
Lee, S.H.5
Park, D.Y.6
Lee, H.E.7
Lee, H.K.8
Byun, M.9
Lee, K.J.10
-
7
-
-
84906809226
-
Self-powered pH sensor based on a flexible organic − inorganic hybrid composite nanogenerator
-
[7] Saravanakumar, B., Soyoon, S., Kim, S., Self-powered pH sensor based on a flexible organic − inorganic hybrid composite nanogenerator. ACS Appl. Mater. Interfaces 6 (2014), 13716–13723.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 13716-13723
-
-
Saravanakumar, B.1
Soyoon, S.2
Kim, S.3
-
8
-
-
77955548078
-
Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy
-
[8] Hansen, B.J., Liu, Y., Yang, R., Wang, Z.L., Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4 (2010), 3647–3652, 10.1021/nn100845b.
-
(2010)
ACS Nano
, vol.4
, pp. 3647-3652
-
-
Hansen, B.J.1
Liu, Y.2
Yang, R.3
Wang, Z.L.4
-
9
-
-
65249165597
-
Converting biomechanical energy into electricity by a muscle-movement- driven nanogenerator
-
[9] Yang, R., Qin, Y., Li, C., Zhu, G., Wang, Z.L., Converting biomechanical energy into electricity by a muscle-movement- driven nanogenerator. Nano Lett. 9 (2009), 1201–1205, 10.1021/nl803904b.
-
(2009)
Nano Lett.
, vol.9
, pp. 1201-1205
-
-
Yang, R.1
Qin, Y.2
Li, C.3
Zhu, G.4
Wang, Z.L.5
-
10
-
-
84902752899
-
Energy harvesting for the implantable biomedical devices: issues and challenges
-
[10] Hannan, M.A., Mutashar, S., Samad, S.A., Hussain, A., Energy harvesting for the implantable biomedical devices: issues and challenges. Biomed. Eng. Online, 13, 2014, 79, 10.1186/1475-925X-13-79.
-
(2014)
Biomed. Eng. Online
, vol.13
, pp. 79
-
-
Hannan, M.A.1
Mutashar, S.2
Samad, S.A.3
Hussain, A.4
-
11
-
-
84929315244
-
High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage
-
[11] Siddiqui, S., Il Kim, D., Duy, L.T., Nguyen, M.T., Muhammad, S., Yoon, W.S., Lee, N.E., High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15 (2015), 177–185, 10.1016/j.nanoen.2015.04.030.
-
(2015)
Nano Energy
, vol.15
, pp. 177-185
-
-
Siddiqui, S.1
Il Kim, D.2
Duy, L.T.3
Nguyen, M.T.4
Muhammad, S.5
Yoon, W.S.6
Lee, N.E.7
-
12
-
-
84928372224
-
Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications
-
[12] Hwang, G.T., Byun, M., Jeong, C.K., Lee, K.J., Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthc. Mater. 4 (2015), 646–658, 10.1002/adhm.201400642.
-
(2015)
Adv. Healthc. Mater.
, vol.4
, pp. 646-658
-
-
Hwang, G.T.1
Byun, M.2
Jeong, C.K.3
Lee, K.J.4
-
13
-
-
84946491060
-
Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications
-
[13] Zhu, G., Peng, B., Chen, J., Jing, Q., Wang, Z. Lin, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14 (2014), 126–138, 10.1016/j.nanoen.2014.11.050.
-
(2014)
Nano Energy
, vol.14
, pp. 126-138
-
-
Zhu, G.1
Peng, B.2
Chen, J.3
Jing, Q.4
Wang, Z.L.5
-
14
-
-
84904709233
-
Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester
-
[14] Hwang, G.T., Park, H., Lee, J.H., Oh, S., Il Park, K., Byun, M., Park, H., Ahn, G., Jeong, C.K., No, K., Kwon, H., Lee, S.G., Joung, B., Lee, K.J., Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26 (2014), 4880–4887, 10.1002/adma.201400562.
-
(2014)
Adv. Mater.
, vol.26
, pp. 4880-4887
-
-
Hwang, G.T.1
Park, H.2
Lee, J.H.3
Oh, S.4
Il Park, K.5
Byun, M.6
Park, H.7
Ahn, G.8
Jeong, C.K.9
No, K.10
Kwon, H.11
Lee, S.G.12
Joung, B.13
Lee, K.J.14
-
15
-
-
78049481908
-
Performance comparison of PZT and PMN-PT piezoceramics for vibration energy harvesting using standard or nonlinear approach
-
[15] Rakbamrung, P., Lallart, M., Guyomar, D., Muensit, N., Thanachayanont, C., Lucat, C., Guiffard, B., Petit, L., Sukwisut, P., Performance comparison of PZT and PMN-PT piezoceramics for vibration energy harvesting using standard or nonlinear approach. Sens. Actuators, A Phys. 163 (2010), 493–500, 10.1016/j.sna.2010.08.028.
-
(2010)
Sens. Actuators, A Phys.
, vol.163
, pp. 493-500
-
-
Rakbamrung, P.1
Lallart, M.2
Guyomar, D.3
Muensit, N.4
Thanachayanont, C.5
Lucat, C.6
Guiffard, B.7
Petit, L.8
Sukwisut, P.9
-
16
-
-
84885388546
-
Preparation on transparent flexible piezoelectric energy harvester based on PZT films by laser lift-off process
-
[16] Do, Y.H., Sukjung, W., Kang, M.G., Kang, C.Y., Yoon, S., Preparation on transparent flexible piezoelectric energy harvester based on PZT films by laser lift-off process. Sens. Actuators A Phys. 200 (2013), 51–55, 10.1016/j.sna.2012.10.034.
-
(2013)
Sens. Actuators A Phys.
, vol.200
, pp. 51-55
-
-
Do, Y.H.1
Sukjung, W.2
Kang, M.G.3
Kang, C.Y.4
Yoon, S.5
-
17
-
-
84899071867
-
Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates
-
[17] Il Park, K., Son, J.H., Hwang, G.T., Jeong, C.K., Ryu, J., Koo, M., Choi, I., Lee, S.H., Byun, M., Wang, Z.L., Lee, K.J., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26 (2014), 2514–2520, 10.1002/adma.201305659.
-
(2014)
Adv. Mater.
, vol.26
, pp. 2514-2520
-
-
Il Park, K.1
Son, J.H.2
Hwang, G.T.3
Jeong, C.K.4
Ryu, J.5
Koo, M.6
Choi, I.7
Lee, S.H.8
Byun, M.9
Wang, Z.L.10
Lee, K.J.11
-
18
-
-
84869996100
-
A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes
-
[18] Kwon, J., Seung, W., Sharma, B.K., Kim, S.-W., Ahn, J.-H., A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ. Sci., 5, 2012, 8970, 10.1039/c2ee22251e.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8970
-
-
Kwon, J.1
Seung, W.2
Sharma, B.K.3
Kim, S.-W.4
Ahn, J.-H.5
-
19
-
-
78650130636
-
3 thin film nanogenerator on plastic substrates
-
3 thin film nanogenerator on plastic substrates. Nano Lett. 10 (2010), 4939–4943, 10.1021/nl102959k.
-
(2010)
Nano Lett.
, vol.10
, pp. 4939-4943
-
-
Il Park, K.1
Xu, S.2
Liu, Y.3
Hwang, G.T.4
Kang, S.J.L.5
Wang, Z.L.6
Lee, K.J.7
-
20
-
-
84861832877
-
3 nanoparticles and graphitic carbons
-
3 nanoparticles and graphitic carbons. Adv. Mater. 24 (2012), 2999–3004, 10.1002/adma.201200105.
-
(2012)
Adv. Mater.
, vol.24
, pp. 2999-3004
-
-
Il Park, K.1
Lee, M.2
Liu, Y.3
Moon, S.4
Hwang, G.T.5
Zhu, G.6
Kim, J.E.7
Kim, S.O.8
Kim, D.K.9
Wang, Z.L.10
Lee, K.J.11
-
21
-
-
84896985026
-
3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator
-
3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8 (2014), 2766–2773, 10.1021/nn406481k.
-
(2014)
ACS Nano
, vol.8
, pp. 2766-2773
-
-
Shin, S.H.1
Kim, Y.H.2
Lee, M.H.3
Jung, J.Y.4
Nah, J.5
-
22
-
-
84860429400
-
Piezoelectric nanofibers for energy scavenging applications
-
[22] Chang, J., Dommer, M., Chang, C., Lin, L., Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1 (2012), 356–371, 10.1016/j.nanoen.2012.02.003.
-
(2012)
Nano Energy
, vol.1
, pp. 356-371
-
-
Chang, J.1
Dommer, M.2
Chang, C.3
Lin, L.4
-
23
-
-
83655164377
-
Porous PVDF as effective sonic wave driven nanogenerators
-
[23] Cha, S., Kim, S.M., Kim, H., Ku, J., Sohn, J.I., Park, Y.J., Song, B.G., Jung, M.H., Lee, E.K., Choi, B.L., Park, J.J., Wang, Z.L., Kim, J.M., Kim, K., Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11 (2011), 5142–5147, 10.1021/nl202208n.
-
(2011)
Nano Lett.
, vol.11
, pp. 5142-5147
-
-
Cha, S.1
Kim, S.M.2
Kim, H.3
Ku, J.4
Sohn, J.I.5
Park, Y.J.6
Song, B.G.7
Jung, M.H.8
Lee, E.K.9
Choi, B.L.10
Park, J.J.11
Wang, Z.L.12
Kim, J.M.13
Kim, K.14
-
24
-
-
84895062006
-
Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator
-
[24] Lee, J.H., Lee, K.Y., Gupta, M.K., Kim, T.Y., Lee, D.Y., Oh, J., Ryu, C., Yoo, W.J., Kang, C.Y., Yoon, S.J., Yoo, J.B., Kim, S.W., Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv. Mater. 26 (2014), 765–769, 10.1002/adma.201303570.
-
(2014)
Adv. Mater.
, vol.26
, pp. 765-769
-
-
Lee, J.H.1
Lee, K.Y.2
Gupta, M.K.3
Kim, T.Y.4
Lee, D.Y.5
Oh, J.6
Ryu, C.7
Yoo, W.J.8
Kang, C.Y.9
Yoon, S.J.10
Yoo, J.B.11
Kim, S.W.12
-
25
-
-
84942311492
-
Piezoelectric nanogenerators - a review of nanostructured piezoelectric energy harvesters
-
[25] Briscoe, J., Dunn, S., Piezoelectric nanogenerators - a review of nanostructured piezoelectric energy harvesters. Nano Energy 14 (2014), 15–29, 10.1016/j.nanoen.2014.11.059.
-
(2014)
Nano Energy
, vol.14
, pp. 15-29
-
-
Briscoe, J.1
Dunn, S.2
-
26
-
-
84890117523
-
Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes
-
[26] Il Park, K., Jeong, C.K., Ryu, J., Hwang, G.T., Lee, K.J., Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energy Mater. 3 (2013), 1539–1544, 10.1002/aenm.201300458.
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 1539-1544
-
-
Il Park, K.1
Jeong, C.K.2
Ryu, J.3
Hwang, G.T.4
Lee, K.J.5
-
27
-
-
84900001706
-
Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler
-
[27] Jeong, C.K., Il Park, K., Ryu, J., Hwang, G.T., Lee, K.J., Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv. Funct. Mater. 24 (2014), 2620–2629, 10.1002/adfm.201303484.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 2620-2629
-
-
Jeong, C.K.1
Il Park, K.2
Ryu, J.3
Hwang, G.T.4
Lee, K.J.5
-
28
-
-
84924113492
-
(Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators
-
[28] Kang, H.B., Han, C.S., Pyun, J.C., Ryu, W.H., Kang, C.Y., Cho, Y.S., (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators. Compos. Sci. Technol. 111 (2015), 1–8, 10.1016/j.compscitech.2015.02.015.
-
(2015)
Compos. Sci. Technol.
, vol.111
, pp. 1-8
-
-
Kang, H.B.1
Han, C.S.2
Pyun, J.C.3
Ryu, W.H.4
Kang, C.Y.5
Cho, Y.S.6
-
29
-
-
4043075572
-
Electrospinning of nanofibers: reinventing the wheel?
-
[29] Li, D., Xia, Y., Electrospinning of nanofibers: reinventing the wheel?. Adv. Mater. 16 (2004), 1151–1170, 10.1002/adma.200400719.
-
(2004)
Adv. Mater.
, vol.16
, pp. 1151-1170
-
-
Li, D.1
Xia, Y.2
-
30
-
-
77949652722
-
Electrospinning: a fascinating fiber fabrication technique
-
[30] Bhardwaj, N., Kundu, S.C., Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28 (2010), 325–347, 10.1016/j.biotechadv.2010.01.004.
-
(2010)
Biotechnol. Adv.
, vol.28
, pp. 325-347
-
-
Bhardwaj, N.1
Kundu, S.C.2
-
31
-
-
84904211354
-
A shoe-embedded piezoelectric energy harvester for wearable sensors
-
[31] Zhao, J., You, Z., A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 14 (2014), 12497–12510, 10.3390/s140712497.
-
(2014)
Sensors
, vol.14
, pp. 12497-12510
-
-
Zhao, J.1
You, Z.2
-
32
-
-
84872100883
-
Insole pedometer with piezoelectric energy harvester and 2 v organic circuits
-
[32] Ishida, K., Huang, T.C., Honda, K., Shinozuka, Y., Fuketa, H., Yokota, T., Zschieschang, U., Klauk, H., Tortissier, G., Sekitani, T., Toshiyoshi, H., Takamiya, M., Someya, T., Sakurai, T., Insole pedometer with piezoelectric energy harvester and 2 v organic circuits. IEEE J. Solid-State Circuits 48 (2013), 255–264, 10.1109/JSSC.2012.2221253.
-
(2013)
IEEE J. Solid-State Circuits
, vol.48
, pp. 255-264
-
-
Ishida, K.1
Huang, T.C.2
Honda, K.3
Shinozuka, Y.4
Fuketa, H.5
Yokota, T.6
Zschieschang, U.7
Klauk, H.8
Tortissier, G.9
Sekitani, T.10
Toshiyoshi, H.11
Takamiya, M.12
Someya, T.13
Sakurai, T.14
-
33
-
-
84885390532
-
Triboelectric nanogenerator built inside shoe insole for harvesting walking energy
-
[33] Hou, T.C., Yang, Y., Zhang, H., Chen, J., Chen, L.J., Wang, Z. Lin, Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2 (2013), 856–862, 10.1016/j.nanoen.2013.03.001.
-
(2013)
Nano Energy
, vol.2
, pp. 856-862
-
-
Hou, T.C.1
Yang, Y.2
Zhang, H.3
Chen, J.4
Chen, L.J.5
Wang, Z.L.6
-
34
-
-
84883868353
-
Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics
-
[34] Zhu, G., Bai, P., Chen, J., Wang, Z. Lin, Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2 (2013), 688–692, 10.1016/j.nanoen.2013.08.002.
-
(2013)
Nano Energy
, vol.2
, pp. 688-692
-
-
Zhu, G.1
Bai, P.2
Chen, J.3
Wang, Z.L.4
-
35
-
-
84912008402
-
High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies
-
[35] Zhang, X.S., Di Han, M., Meng, B., Zhang, H.X., High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energy 11 (2015), 304–322, 10.1016/j.nanoen.2014.11.012.
-
(2015)
Nano Energy
, vol.11
, pp. 304-322
-
-
Zhang, X.S.1
Di Han, M.2
Meng, B.3
Zhang, H.X.4
-
36
-
-
84913554665
-
Triboelectric nanogenerators as self-powered active sensors
-
[36] Wang, S., Lin, L., Wang, Z.L., Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11 (2015), 436–462, 10.1016/j.nanoen.2014.10.034.
-
(2015)
Nano Energy
, vol.11
, pp. 436-462
-
-
Wang, S.1
Lin, L.2
Wang, Z.L.3
-
37
-
-
84919397233
-
3 NPs at PVDF
-
3 NPs at PVDF. Nano Energy 11 (2015), 719–727, 10.1016/j.nanoen.2014.11.061.
-
(2015)
Nano Energy
, vol.11
, pp. 719-727
-
-
Zhao, Y.1
Liao, Q.2
Zhang, G.3
Zhang, Z.4
Liang, Q.5
Liao, X.6
Zhang, Y.7
-
38
-
-
84934929323
-
Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers
-
[38] Roh, E., Hwang, B.U., Kim, D., Kim, B.Y., Lee, N.E., Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9 (2015), 6252–6261, 10.1021/acsnano.5b01613.
-
(2015)
ACS Nano
, vol.9
, pp. 6252-6261
-
-
Roh, E.1
Hwang, B.U.2
Kim, D.3
Kim, B.Y.4
Lee, N.E.5
-
39
-
-
80053318146
-
Physically responsive field-effect transistors with giant electromechanical coupling induced by nanocomposite gate dielectrics
-
[39] Tien, N.T., Trung, T.Q., Seoul, Y.G., Il Kim, D., Lee, N.E., Physically responsive field-effect transistors with giant electromechanical coupling induced by nanocomposite gate dielectrics. ACS Nano 5 (2011), 7069–7076, 10.1021/nn2017827.
-
(2011)
ACS Nano
, vol.5
, pp. 7069-7076
-
-
Tien, N.T.1
Trung, T.Q.2
Seoul, Y.G.3
Il Kim, D.4
Lee, N.E.5
-
40
-
-
0035984039
-
Poly (dimethylsiloxane) as a material for fabricating microfluidic devices
-
[40] McDonald, J.C., Whitesides, G.M., Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35 (2002), 491–499, 10.1021/ac001132d.
-
(2002)
Acc. Chem. Res.
, vol.35
, pp. 491-499
-
-
McDonald, J.C.1
Whitesides, G.M.2
-
41
-
-
84898991781
-
Effects of semiconductor/dielectric interfacial properties on the electrical performance of top-gate organic transistors
-
[41] Choi, D., An, T.K., Kim, Y.J., Chung, D.S., Kim, S.H., Park, C.E., Effects of semiconductor/dielectric interfacial properties on the electrical performance of top-gate organic transistors. Org. Electron. 15 (2014), 1299–1305, 10.1016/j.orgel.2014.02.026.
-
(2014)
Org. Electron.
, vol.15
, pp. 1299-1305
-
-
Choi, D.1
An, T.K.2
Kim, Y.J.3
Chung, D.S.4
Kim, S.H.5
Park, C.E.6
-
42
-
-
80051882407
-
Effect of annealing on the phase transition in poly (vinylidene fluoride) films prepared using polar solvent
-
[42] Satapathy, S., Pawar, S., Gupta, P.K., Varma, K.B.R., Effect of annealing on the phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci., 34, 2011, 7, 10.1007/s12034-011-0187-0.
-
(2011)
Bull. Mater. Sci.
, vol.34
, pp. 7
-
-
Satapathy, S.1
Pawar, S.2
Gupta, P.K.3
Varma, K.B.R.4
-
43
-
-
84895062834
-
A flexible bimodal sensor array for simultaneous sensing of pressure and temperature
-
[43] Tien, N.T., Jeon, S., Il Kim, D., Trung, T.Q., Jang, M., Hwang, B.U., Byun, K.E., Bae, J., Lee, E., Tok, J.B.H., Bao, Z., Lee, N.E., Park, J.J., A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater. 26 (2014), 796–804, 10.1002/adma.201302869.
-
(2014)
Adv. Mater.
, vol.26
, pp. 796-804
-
-
Tien, N.T.1
Jeon, S.2
Il Kim, D.3
Trung, T.Q.4
Jang, M.5
Hwang, B.U.6
Byun, K.E.7
Bae, J.8
Lee, E.9
Tok, J.B.H.10
Bao, Z.11
Lee, N.E.12
Park, J.J.13
-
44
-
-
84937416598
-
Enhanced ferroelectric properties of electrospun poly(vinylidene fluoride) nanofibers by adjusting processing parameters
-
[44] Abolhasani, M.M., Azimi, S., Fashandi, H., Enhanced ferroelectric properties of electrospun poly(vinylidene fluoride) nanofibers by adjusting processing parameters. RSC Adv. 5 (2015), 61277–61283, 10.1039/C5RA11441A.
-
(2015)
RSC Adv.
, vol.5
, pp. 61277-61283
-
-
Abolhasani, M.M.1
Azimi, S.2
Fashandi, H.3
-
45
-
-
84876922720
-
Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites
-
[45] Nunes-Pereira, J., Sencadas, V., Correia, V., Rocha, J.G., Lanceros-Mendez, S., Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sens. Actuators A Phys. 196 (2013), 55–62, 10.1016/j.sna.2013.03.023.
-
(2013)
Sens. Actuators A Phys.
, vol.196
, pp. 55-62
-
-
Nunes-Pereira, J.1
Sencadas, V.2
Correia, V.3
Rocha, J.G.4
Lanceros-Mendez, S.5
|