-
1
-
-
84555195640
-
Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications
-
A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, "Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications," Physics Review E, vol. 84:066106, 2011.
-
(2011)
Physics Review e
, vol.84
, pp. 066106
-
-
Decelle, A.1
Krzakala, F.2
Moore, C.3
Zdeborová, L.4
-
3
-
-
0012864758
-
Stochastic blockmodels: First steps
-
P. W. Holland, K. B. Laskey, and S. Leinhardt, "Stochastic blockmodels: First steps," Social Networks, vol. 5, no. 2, pp. 109-137, 1983.
-
(1983)
Social Networks
, vol.5
, Issue.2
, pp. 109-137
-
-
Holland, P.W.1
Laskey, K.B.2
Leinhardt, S.3
-
5
-
-
0034408816
-
Broadcasting on trees and the Ising model
-
W. Evans, C. Kenyon, Y. Peres, and L. Schulman, "Broadcasting on trees and the Ising model," The Annals of Applied Probability, vol. 10, no. 2, pp. 410-433, 2000.
-
(2000)
The Annals of Applied Probability
, vol.10
, Issue.2
, pp. 410-433
-
-
Evans, W.1
Kenyon, C.2
Peres, Y.3
Schulman, L.4
-
6
-
-
77951254878
-
Graph partitioning via adaptive spectral techniques
-
doi: 10.1017/S0963548309990514
-
A. Coja-Oghlan, "Graph partitioning via adaptive spectral techniques," Comb. Probab. Comput., vol. 19, no. 2, pp. 227-284, 2010. [Online]. Available: doi: 10.1017/S0963548309990514
-
(2010)
Comb. Probab. Comput
, vol.19
, Issue.2
, pp. 227-284
-
-
Coja-Oghlan, A.1
-
7
-
-
67949093089
-
A proof of Alon's second eigenvalue conjecture and related problem
-
J. Friedman, "A proof of Alon's second eigenvalue conjecture and related problem," Mem. Amer. Math. Soc., no. 910., 2008.
-
(2008)
Mem. Amer. Math. Soc
, Issue.910
-
-
Friedman, J.1
-
8
-
-
26944482759
-
Spectral techniques applied to sparse random graphs
-
Sept. doi: 10.1002/rsa.v27:2
-
U. Feige and E. Ofek, "Spectral techniques applied to sparse random graphs," Random Struct. Algorithms, vol. 27, no. 2, pp. 251-275, Sept. 2005. [Online]. Available: doi: 10.1002/rsa.v27:2
-
(2005)
Random Struct. Algorithms
, vol.27
, Issue.2
, pp. 251-275
-
-
Feige, U.1
Ofek, E.2
-
9
-
-
84891363833
-
Spectral redemption: Clustering sparse networks
-
F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, and P. Zhang, "Spectral redemption: clustering sparse networks," Proceedings of the National Academy of Sciences, no. 110(52), pp. 20 935-20 940, 2013.
-
(2013)
Proceedings of the National Academy of Sciences
, vol.110
, Issue.52
, pp. 20935-20940
-
-
Krzakala, F.1
Moore, C.2
Mossel, E.3
Neeman, J.4
Sly, A.5
Zdeborová, L.6
Zhang, P.7
-
10
-
-
84860628853
-
Graph spectra and the detectability of community structure in networks
-
R. R. Nadakuditi and M. E. J. Newman, "Graph spectra and the detectability of community structure in networks," Phys. Rev. Lett., no. 108, 2012.
-
(2012)
Phys. Rev. Lett
, Issue.108
-
-
Nadakuditi, R.R.1
Newman, M.E.J.2
-
11
-
-
84904282159
-
-
Sep
-
E. Mossel, J. Neeman, and A. Sly, "Belief propagation, robust reconstruction and optimal recovery of block models," Sep. 2013, available at: http://arxiv.org/abs/1309.1380.
-
(2013)
Belief Propagation, Robust Reconstruction and Optimal Recovery of Block Models
-
-
Mossel, E.1
Neeman, J.2
Sly, A.3
-
13
-
-
51249182622
-
The eigenvalues of random symmetric matrices
-
Z. Füredi and J. Komlós, "The eigenvalues of random symmetric matrices," Combinatorica, no. 1(3), pp. 233-241, 1981.
-
(1981)
Combinatorica
, vol.1
, Issue.3
, pp. 233-241
-
-
Füredi, Z.1
Komlós, J.2
-
15
-
-
0002610091
-
Additional limit theorems for indecomposable multidimensional Galton-Watson processes
-
H. Kesten and B. P. Stigum, "Additional limit theorems for indecomposable multidimensional Galton-Watson processes," Ann. Math. Statist., no. 37, pp. 1463-1481, 1966.
-
(1966)
Ann. Math. Statist
, Issue.37
, pp. 1463-1481
-
-
Kesten, H.1
Stigum, B.P.2
|