메뉴 건너뛰기




Volumn , Issue , 2016, Pages 216-224

Linear and kernel classification: When to use which?

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; LEARNING SYSTEMS;

EID: 84991735360     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (36)

References (26)
  • 1
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM TIST, 2(3):27:l-27:27, 2011.
    • (2011) ACM TIST , vol.2 , Issue.3 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 2
    • 77951969231 scopus 로고    scopus 로고
    • Training and testing low-degree polynomial data mappings via linear SVM
    • Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ring-gaard, and C.-J. Lin. Training and testing low-degree polynomial data mappings via linear SVM. JMLR, 11:1471-1490, 2010.
    • (2010) JMLR , vol.11 , pp. 1471-1490
    • Chang, Y.-W.1    Hsieh, C.-J.2    Chang, K.-W.3    Ring-Gaard, M.4    Lin, C.-J.5
  • 3
    • 84954123004 scopus 로고    scopus 로고
    • Warm start for parameter selection of linear classifiers
    • B.-Y. Chu, C.-H. Ho, C.-H. Tsai, C.-Y. Lin, and C-J. Lin. Warm start for parameter selection of linear classifiers. In KDD, 2015.
    • KDD , vol.2015
    • Chu, B.-Y.1    Ho, C.-H.2    Tsai, C.-H.3    Lin, C.-Y.4    Lin, C.-J.5
  • 4
    • 34249753618 scopus 로고
    • Support-vector network
    • C. Cortes and V. Vapnik. Support-vector network. MLJ, 20:273-297, 1995.
    • (1995) MLJ , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: a library for large linear classification. JMLR, 9:1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 6
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds of classifiers to solve real world classification problems? JMLR, 15:3133-3181, 2014.
    • (2014) JMLR , vol.15 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 7
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. JMLR, 2:243-264, 2001.
    • (2001) JMLR , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 8
    • 84904088711 scopus 로고    scopus 로고
    • Clustered support vector machines
    • Q. Gu and J. Han. Clustered support vector machines. In AISTATS, 2013.
    • (2013) AISTATS
    • Gu, Q.1    Han, J.2
  • 9
    • 84898964855 scopus 로고    scopus 로고
    • Result analysis of the NIPS 2003 feature selection challenge
    • I. Guyon, S. Gunn, A. B. Hur, and G. Dror. Result analysis of the NIPS 2003 feature selection challenge. In NIPS. 2005.
    • NIPS , vol.2005
    • Guyon, I.1    Gunn, S.2    Hur, A.B.3    Dror, G.4
  • 12
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S. S. Keerthi and C.-J. Lin. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput, 15(7):1667-1689, 2003.
    • (2003) Neural Comput , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 13
    • 80053436893 scopus 로고    scopus 로고
    • Locally linear support vector machines
    • L. Ladicky and P. H. S. Torr. Locally linear support vector machines. In ICML, 2011.
    • (2011) ICML
    • Ladicky, L.1    Torr, P.H.S.2
  • 14
    • 84897549944 scopus 로고    scopus 로고
    • Fastfood-approximating kernel expansions in loglinear time
    • Q. Le, T. Sarlos, and A. Smola. Fastfood-approximating kernel expansions in loglinear time. In ICML, 2013.
    • (2013) ICML
    • Le, Q.1    Sarlos, T.2    Smola, A.3
  • 15
    • 79955153536 scopus 로고    scopus 로고
    • RSVM: Reduced support vector machines
    • Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. In SDM, 2001.
    • (2001) SDM
    • Lee, Y.-J.1    Mangasarian, O.L.2
  • 16
    • 33646543721 scopus 로고    scopus 로고
    • Infinite-cr limits for Tikhonov regularization
    • R. A. Lippert and R. M. Rifkin. Infinite-cr limits for Tikhonov regularization. JMLR, 7:855-876, 2006.
    • (2006) JMLR , vol.7 , pp. 855-876
    • Lippert, R.A.1    Rifkin, R.M.2
  • 17
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • S. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theor., 28:129-137, 1982.
    • (1982) IEEE Trans. Inf. Theor , vol.28 , pp. 129-137
    • Lloyd, S.1
  • 18
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • September
    • D. Meyer, F. Leisch, and K. Hornik. The support vector machine under test. Neurocomputing, 55:169-186, September 2003.
    • (2003) Neurocomputing , vol.55 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 19
    • 85023199520 scopus 로고    scopus 로고
    • Fast and scalable polynomial kernels via explicit feature maps
    • N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature maps. In KDD, 2013.
    • (2013) KDD
    • Pham, N.1    Pagh, R.2
  • 20
    • 85161980201 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • A. Rahimi and B. Recht. Random features for large-scale kernel machines. NIPS, 2008.
    • (2008) NIPS
    • Rahimi, A.1    Recht, B.2
  • 23
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In NIPS, 2001.
    • (2001) NIPS
    • Williams, C.K.I.1    Seeger, M.2
  • 24
    • 80052660676 scopus 로고    scopus 로고
    • Dual coordinate descent methods for logistic regression and maximum entropy models
    • H.-F. Yu, F.-L. Huang, and C.-J. Lin. Dual coordinate descent methods for logistic regression and maximum entropy models. MLJ, 85:41-75, 2011.
    • (2011) MLJ , vol.85 , pp. 41-75
    • Yu, H.-F.1    Huang, F.-L.2    Lin, C.-J.3
  • 25
    • 84865422696 scopus 로고    scopus 로고
    • Recent advances of large-scale linear classification
    • G.-X. Yuan, C.-H. Ho, and C.-J. Lin. Recent advances of large-scale linear classification. PIEEE, 100:2584-2603, 2012.
    • (2012) PIEEE , vol.100 , pp. 2584-2603
    • Yuan, G.-X.1    Ho, C.-H.2    Lin, C.-J.3
  • 26
    • 84919807585 scopus 로고    scopus 로고
    • Scaling up kernel SVM on limited resources: A low-rank linearization approach
    • K. Zhang, L. Lan, Z. Wang, and F. Moerchen. Scaling up kernel SVM on limited resources: A low-rank linearization approach. In AISTATS, 2012.
    • (2012) AISTATS
    • Zhang, K.1    Lan, L.2    Wang, Z.3    Moerchen, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.