메뉴 건너뛰기




Volumn 2016-September, Issue , 2016, Pages 2003-2008

Power load forecasting based on support vector machine and particle swarm optimization

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRIC LOAD FORECASTING; ELECTRIC POWER PLANT LOADS; FORECASTING; INTELLIGENT CONTROL; RADIAL BASIS FUNCTION NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84991666121     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WCICA.2016.7578535     Document Type: Conference Paper
Times cited : (17)

References (21)
  • 3
    • 10844269472 scopus 로고    scopus 로고
    • Electric load forecasting using a fuzzy ART&ARTMAP neural network
    • Jan.
    • M. L. M. Lopez, C. R. Minussi and A. D. P. Lutufo, "Electric load forecasting using a fuzzy ART&ARTMAP neural network, " Applied Soft Computing, pp. 235-244, Jan. 2005.
    • (2005) Applied Soft Computing , pp. 235-244
    • Lopez, M.L.M.1    Minussi, C.R.2    Lutufo, A.D.P.3
  • 4
    • 84859610654 scopus 로고    scopus 로고
    • Short-term load forecasting using Bayesian neural networks, learned by Hybrid Monte Carlo algorithm
    • Jun.
    • D. X. Niu, H. F. Shi and D. D. Wu, "Short-term load forecasting using Bayesian neural networks, learned by Hybrid Monte Carlo algorithm, " Applied Soft Computing, pp. 1822-1827, Jun. 2012.
    • (2012) Applied Soft Computing , pp. 1822-1827
    • Niu, D.X.1    Shi, H.F.2    Wu, D.D.3
  • 5
    • 45449091535 scopus 로고    scopus 로고
    • A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting
    • B. Wang, N. Tai, H. Zhai, J. Ye, J. Zhu and L. Qi, "A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting, " Electric Power Systems Research, pp. 1679-1685, 2008.
    • (2008) Electric Power Systems Research , pp. 1679-1685
    • Wang, B.1    Tai, N.2    Zhai, H.3    Ye, J.4    Zhu, J.5    Qi, L.6
  • 6
    • 11244305511 scopus 로고    scopus 로고
    • NARMAX time series model prediction: Feedforward and recurrent fuzzy neural network approaches
    • Y. Gao and M. Er, "NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches, " Fuzzy Sets and Systems, pp. 331-350, 2005.
    • (2005) Fuzzy Sets and Systems , pp. 331-350
    • Gao, Y.1    Er, M.2
  • 7
    • 69849084766 scopus 로고    scopus 로고
    • A methodology for short-term electric load forecasting based on specialized recursive digital filters
    • C. A. Maia and M. M. Goncalves, "A methodology for short-term electric load forecasting based on specialized recursive digital filters, " Computers & Industrial Engineering, pp. 724-731, 2009.
    • (2009) Computers & Industrial Engineering , pp. 724-731
    • Maia, C.A.1    Goncalves, M.M.2
  • 9
    • 63149157219 scopus 로고    scopus 로고
    • A fuzzy inference model for short-term load forecasting
    • R. Mamlook, O. Badran and E. Abdulhadi, "A fuzzy inference model for short-term load forecasting, " Energy Policy, pp. 1239-1248, 2009.
    • (2009) Energy Policy , pp. 1239-1248
    • Mamlook, R.1    Badran, O.2    Abdulhadi, E.3
  • 13
    • 84899800725 scopus 로고    scopus 로고
    • A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
    • Oct.
    • A. Kavousi-Fard, H. Samet and F. Marzbani, "A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting, " Expert Systems with Applications, vol. 41, no. 13, pp. 6047-6065, Oct. 2014.
    • (2014) Expert Systems with Applications , vol.41 , Issue.13 , pp. 6047-6065
    • Kavousi-Fard, A.1    Samet, H.2    Marzbani, F.3
  • 15
    • 84870024579 scopus 로고    scopus 로고
    • A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
    • H. Z. Li, S. Guo, C. J. Li and J. Q. Sun, "A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm, " Knowledge-Based System, vol. 37, pp. 378-387, 2013.
    • (2013) Knowledge-Based System , vol.37 , pp. 378-387
    • Li, H.Z.1    Guo, S.2    Li, C.J.3    Sun, J.Q.4
  • 16
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Jan.
    • O. Chapelle, V. Vapnik, O. Bousquet and S. Mukherjee, "Choosing multiple parameters for support vector machines, " Machine Learning, vol. 46, pp. 131-159, Jan. 2002.
    • (2002) Machine Learning , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 17
    • 36348930598 scopus 로고    scopus 로고
    • Toward estimating autonomous neural network-based electric load forecasters
    • Nov.
    • V. H. Ferreira, "Toward estimating autonomous neural network-based electric load forecasters, " IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1554-1562, Nov. 2007.
    • (2007) IEEE Transactions on Power Systems , vol.22 , Issue.4 , pp. 1554-1562
    • Ferreira, V.H.1
  • 18
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • V. Vapnik, S. Golowich and A. Smola, "Support vector method for function approximation, regression estimation, and signal processing, " Advances in Neural Information Processing Systems, vol. 9, pp. 281-287, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 19
    • 84896721435 scopus 로고    scopus 로고
    • Empirical study of particle swarm optimization
    • Y. Shi and R. C. Eberhart, "Empirical study of particle swarm optimization, " Evolutionary Computation, vol. 3, 1999.
    • (1999) Evolutionary Computation , vol.3
    • Shi, Y.1    Eberhart, R.C.2
  • 21
    • 84893511889 scopus 로고    scopus 로고
    • Empirical exploration of extreme SVMRBF parameter values for visual object classification
    • R. Albatal and S. Little, "Empirical exploration of extreme SVMRBF parameter values for visual object classification, " MultiMedia Modeling, pp. 299-306, 2014.
    • (2014) MultiMedia Modeling , pp. 299-306
    • Albatal, R.1    Little, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.