-
1
-
-
84964983620
-
-
American Cancer Society (2013), Cancer Facts & Figures 2013. Available at http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-036845.pdf
-
(2013)
Cancer Facts & Figures 2013
-
-
-
2
-
-
0003572485
-
-
New York: Springer
-
P.K.Andersen, O.Borgan, R.D.Gill, and N.Keiding, (1993), Statistical Models Based on Counting Processes, New York:Springer.
-
(1993)
Statistical Models Based on Counting Processes
-
-
Andersen, P.K.1
Borgan, O.2
Gill, R.D.3
Keiding, N.4
-
3
-
-
0002055269
-
Nonparametric Bayesian Inference From Right Censored Survival Data, Using the Gibbs Sampler
-
E.Arjas, and D.Gasbarra, (1994), “Nonparametric Bayesian Inference From Right Censored Survival Data, Using the Gibbs Sampler,” Statistica Sinica, 4, 505–524.
-
(1994)
Statistica Sinica
, vol.4
, pp. 505-524
-
-
Arjas, E.1
Gasbarra, D.2
-
4
-
-
84866311072
-
Statistical Issues in Assessing Hospital Performance,
-
A.S.Ash, S.F.Fienberg, T.A.Louis, S.-L.T.Normand, T.A.Stukel, and J.Utts, (2012), “Statistical Issues in Assessing Hospital Performance,” Commissioned by the Committee of Presidents of Statistical Societies for the CMS.
-
(2012)
Commissioned by the Committee of Presidents of Statistical Societies for the CMS
-
-
Ash, A.S.1
Fienberg, S.F.2
Louis, T.A.3
Normand, S.-L.T.4
Stukel, T.A.5
Utts, J.6
-
5
-
-
84857735735
-
-
Barbour, V., Clark, J., Norton, M., Simpson, P., and Veitch E. (2012) “Beyond the Numbers:Describing Care at the End of Life,” PLoS Medicine, 9, e1001181.
-
(2012)
Beyond the Numbers: Describing Care at the End of Life,” PLoS Medicine
, vol.9
, pp. e1001181
-
-
-
6
-
-
33845221523
-
On Conditional and Intrinsic Autoregressions
-
J.Besag, and C.Kooperberg, (1995), “On Conditional and Intrinsic Autoregressions,” Biometrika, 82, 733–746.
-
(1995)
Biometrika
, vol.82
, pp. 733-746
-
-
Besag, J.1
Kooperberg, C.2
-
7
-
-
84907829454
-
Acute Hospital Care is the Chief Driver of Regional Spending Variation in Medicare Patients With Advanced Cancer
-
G.A.Brooks, L.Li, H.Uno, M.J.Hassett, B.E.Landon, and D.Schrag, (2014), “Acute Hospital Care is the Chief Driver of Regional Spending Variation in Medicare Patients With Advanced Cancer,” Health Affairs, 33, 1793–1800.
-
(2014)
Health Affairs
, vol.33
, pp. 1793-1800
-
-
Brooks, G.A.1
Li, L.2
Uno, H.3
Hassett, M.J.4
Landon, B.E.5
Schrag, D.6
-
8
-
-
0000904732
-
A Semiparametric Bayesian Model for Randomised Block Designs
-
C.A.Bush, and S.N.MacEachern, (1996), “A Semiparametric Bayesian Model for Randomised Block Designs,” Biometrika, 83, 275–285.
-
(1996)
Biometrika
, vol.83
, pp. 275-285
-
-
Bush, C.A.1
MacEachern, S.N.2
-
9
-
-
70450277983
-
Deviance Information Criteria for Missing Data Models
-
G.Celeux, F.Forbes, C.P.Robert, and D.M.Titterington, (2006), “Deviance Information Criteria for Missing Data Models,” Bayesian Analysis, 1, 651–673.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 651-673
-
-
Celeux, G.1
Forbes, F.2
Robert, C.P.3
Titterington, D.M.4
-
10
-
-
39849106476
-
Competing Risks Analysis of Correlated Failure Time Data
-
B.E.Chen, J.L.Kramer, M.H.Greene, and P.S.Rosenberg, (2008), “Competing Risks Analysis of Correlated Failure Time Data,” Biometrics, 64, 172–179.
-
(2008)
Biometrics
, vol.64
, pp. 172-179
-
-
Chen, B.E.1
Kramer, J.L.2
Greene, M.H.3
Rosenberg, P.S.4
-
11
-
-
84858439975
-
-
CMS (2013a), Hospital Inpatient Quality Reporting Program, available at https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/HospitalQualityInits/HospitalRHQDAPU.html.
-
(2013)
Hospital Inpatient Quality Reporting Program
-
-
-
12
-
-
84883713935
-
-
——— (2013b), Readmissions Reduction Program, available at http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html.
-
(2013)
Readmissions Reduction Program
-
-
-
13
-
-
0003597030
-
-
New York: Oxford University Press
-
P.Diggle, P.Heagerty, K.-Y.Liang, and S.Zeger, (2002), Analysis of Longitudinal Data, New York:Oxford University Press.
-
(2002)
Analysis of Longitudinal Data
-
-
Diggle, P.1
Heagerty, P.2
Liang, K.-Y.3
Zeger, S.4
-
14
-
-
34648843641
-
Causal Inference for Non-Mortality Outcomes in the Presence of Death
-
B.L.Egleston, D.O.Scharfstein, E.E.Freeman, and S.K.West, (2007), “Causal Inference for Non-Mortality Outcomes in the Presence of Death,” Biostatistics, 8, 526–545.
-
(2007)
Biostatistics
, vol.8
, pp. 526-545
-
-
Egleston, B.L.1
Scharfstein, D.O.2
Freeman, E.E.3
West, S.K.4
-
15
-
-
84855179168
-
The Relationship Between Hospital Admission Rates and Rehospitalizations
-
A.M.Epstein, A.K.Jha, and E.J.Orav, (2011), “The Relationship Between Hospital Admission Rates and Rehospitalizations,” New England Journal of Medicine, 365, 2287–2295.
-
(2011)
New England Journal of Medicine
, vol.365
, pp. 2287-2295
-
-
Epstein, A.M.1
Jha, A.K.2
Orav, E.J.3
-
16
-
-
84950937290
-
Bayesian Density Estimation and Inference Using Mixtures
-
M.D.Escobar, and M.West, (1995), “Bayesian Density Estimation and Inference Using Mixtures,” Journal of the American Statistical Association, 90, 577–588.
-
(1995)
Journal of the American Statistical Association
, vol.90
, pp. 577-588
-
-
Escobar, M.D.1
West, M.2
-
17
-
-
0001120413
-
A Bayesian Analysis of Some Nonparametric Problems
-
T.S.Ferguson, (1973), “A Bayesian Analysis of Some Nonparametric Problems,” The Annals of Statistics, 1, 209–230.
-
(1973)
The Annals of Statistics
, vol.1
, pp. 209-230
-
-
Ferguson, T.S.1
-
18
-
-
0012837948
-
On Semi-Competing Risks Data
-
J.Fine, H.Jiang, and R.Chappell, (2001), “On Semi-Competing Risks Data,” Biometrika, 88, 907–919.
-
(2001)
Biometrika
, vol.88
, pp. 907-919
-
-
Fine, J.1
Jiang, H.2
Chappell, R.3
-
21
-
-
0001526195
-
A Predictive Approach to Model Selection
-
S.Geisser, and W.F.Eddy, (1979), “A Predictive Approach to Model Selection,” Journal of the American Statistical Association, 74, 153–160.
-
(1979)
Journal of the American Statistical Association
, vol.74
, pp. 153-160
-
-
Geisser, S.1
Eddy, W.F.2
-
22
-
-
0029148987
-
Bayesian Analysis of Proportional Hazards Models Built From Monotone Functions
-
A.E.Gelfand, and B.K.Mallick, (1995), “Bayesian Analysis of Proportional Hazards Models Built From Monotone Functions,” Biometrics, 51, 843–852.
-
(1995)
Biometrics
, vol.51
, pp. 843-852
-
-
Gelfand, A.E.1
Mallick, B.K.2
-
23
-
-
85053970271
-
-
Boca Raton, FL: Chapman and Hall/CRC
-
A.Gelman, J.B.Carlin, H.S.Stern, and D.B.Rubin, (2013), Bayesian Data Analysis, Boca Raton, FL:Chapman and Hall/CRC.
-
(2013)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
24
-
-
79959354598
-
Frailty-Based Competing Risks Model for Multivariate Survival Data
-
M.Gorfine, and L.Hsu, (2011), “Frailty-Based Competing Risks Model for Multivariate Survival Data,” Biometrics, 67, 415–426.
-
(2011)
Biometrics
, vol.67
, pp. 415-426
-
-
Gorfine, M.1
Hsu, L.2
-
25
-
-
84897065350
-
Calibrated Predictions for Multivariate Competing Risks Models
-
M.Gorfine, L.Hsu, D.M.Zucker, and G.Parmigiani, (2014), “Calibrated Predictions for Multivariate Competing Risks Models,” Lifetime Data Analysis, 20, 234–251.
-
(2014)
Lifetime Data Analysis
, vol.20
, pp. 234-251
-
-
Gorfine, M.1
Hsu, L.2
Zucker, D.M.3
Parmigiani, G.4
-
26
-
-
77956889087
-
Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination
-
P.Green, (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,” Biometrika, 82, 711–732.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.1
-
27
-
-
84920285353
-
Bayesian Approach for Flexible Modeling of Semicompeting Risks Data
-
B.Han, M.Yu, J.J.Dignam, and P.J.Rathouz, (2014), “Bayesian Approach for Flexible Modeling of Semicompeting Risks Data,” Statistics in Medicine, 33, 5111–5125.
-
(2014)
Statistics in Medicine
, vol.33
, pp. 5111-5125
-
-
Han, B.1
Yu, M.2
Dignam, J.J.3
Rathouz, P.J.4
-
28
-
-
45849132989
-
The Separation of Timescales in Bayesian Survival Modeling of the Time-Varying Effect of a Time-Dependent Exposure
-
S.Haneuse, K.Rudser, and D.Gillen, (2008), “The Separation of Timescales in Bayesian Survival Modeling of the Time-Varying Effect of a Time-Dependent Exposure,” Biostatistics, 9, 400–410.
-
(2008)
Biostatistics
, vol.9
, pp. 400-410
-
-
Haneuse, S.1
Rudser, K.2
Gillen, D.3
-
30
-
-
0035648841
-
On Heteroscedastic Hazards Regression Models: Theory and Application,
-
Series B
-
F.Hsieh, (2001), “On Heteroscedastic Hazards Regression Models:Theory and Application,” Journal of the Royal Statistical Society, Series B, 63, 63–79.
-
(2001)
Journal of the Royal Statistical Society
, vol.63
, pp. 63-79
-
-
Hsieh, F.1
-
31
-
-
37849004104
-
Regression Analysis Based on Semicompeting Risks Data,
-
Series B
-
J.Hsieh, W.Wang, and A.Ding, (2008), “Regression Analysis Based on Semicompeting Risks Data,” Journal of the Royal Statistical Society, Series B, 70, 3–20.
-
(2008)
Journal of the Royal Statistical Society
, vol.70
, pp. 3-20
-
-
Hsieh, J.1
Wang, W.2
Ding, A.3
-
32
-
-
35648987940
-
On Robustness of Marginal Regression Coefficient Estimates and Hazard Functions in Multivariate Survival Analysis of Family Data When the Frailty Distribution is Mis-Specified
-
L.Hsu, M.Gorfine, and K.Malone, (2007), “On Robustness of Marginal Regression Coefficient Estimates and Hazard Functions in Multivariate Survival Analysis of Family Data When the Frailty Distribution is Mis-Specified,” Statistics in Medicine, 26, 4657–4678.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 4657-4678
-
-
Hsu, L.1
Gorfine, M.2
Malone, K.3
-
34
-
-
79951699237
-
Thirty-Day Readmission Rates for Medicare Beneficiaries by Race and Site of Care
-
K.E.Joynt, E.J.Orav, and A.K.Jha, (2011), “Thirty-Day Readmission Rates for Medicare Beneficiaries by Race and Site of Care,” Journal of the American Medical Association, 305, 675–681.
-
(2011)
Journal of the American Medical Association
, vol.305
, pp. 675-681
-
-
Joynt, K.E.1
Orav, E.J.2
Jha, A.K.3
-
35
-
-
2142781609
-
Methods and Criteria for Model Selection
-
J.B.Kadane, and N.A.Lazar, (2004), “Methods and Criteria for Model Selection,” Journal of the American Statistical Association, 99, 279–290.
-
(2004)
Journal of the American Statistical Association
, vol.99
, pp. 279-290
-
-
Kadane, J.B.1
Lazar, N.A.2
-
36
-
-
84950934893
-
Bayes Factors
-
R.E.Kass, and A.E.Raftery, (1995), “Bayes Factors,” Journal of the American Statistical Association, 90, 773–795.
-
(1995)
Journal of the American Statistical Association
, vol.90
, pp. 773-795
-
-
Kass, R.E.1
Raftery, A.E.2
-
37
-
-
33845868557
-
Analysing Multicentre Competing Risks Data With a Mixed Proportional Hazards Model for the Subdistribution
-
S.Katsahian, M.Resche-Rigon, S.Chevret, and R.Porcher, (2006), “Analysing Multicentre Competing Risks Data With a Mixed Proportional Hazards Model for the Subdistribution,” Statistics in Medicine, 25, 4267–4278.
-
(2006)
Statistics in Medicine
, vol.25
, pp. 4267-4278
-
-
Katsahian, S.1
Resche-Rigon, M.2
Chevret, S.3
Porcher, R.4
-
38
-
-
55249104054
-
Bayesian Semiparametric Multi-State Models
-
T.Kneib, and A.Hennerfeind, (2008), “Bayesian Semiparametric Multi-State Models,” Statistical Modeling, 8, 169–198.
-
(2008)
Statistical Modeling
, vol.8
, pp. 169-198
-
-
Kneib, T.1
Hennerfeind, A.2
-
39
-
-
79959697118
-
An Administrative Claims Measure Suitable for Profiling Hospital Performance Based on 30-Day All-Cause Readmission Rates Among Patients With Acute Myocardial Infarction
-
H.M.Krumholz, Z.Lin, E.E.Drye, M.M.Desai, L.F.Han, M.T.Rapp, J.A.Mattera, and S.-L.T.Normand, (2011), “An Administrative Claims Measure Suitable for Profiling Hospital Performance Based on 30-Day All-Cause Readmission Rates Among Patients With Acute Myocardial Infarction,” Circulation:Cardiovascular Quality and Outcomes, 4, 243–252.
-
(2011)
Circulation: Cardiovascular Quality and Outcomes
, vol.4
, pp. 243-252
-
-
Krumholz, H.M.1
Lin, Z.2
Drye, E.E.3
Desai, M.M.4
Han, L.F.5
Rapp, M.T.6
Mattera, J.A.7
Normand, S.-L.T.8
-
40
-
-
0031031212
-
Readmission After Hospitalization for Congestive Heart Failure Among Medicare Beneficiaries
-
H.M.Krumholz, E.M.Parent, N.Tu, V.Vaccarino, Y.Wang, M.J.Radford, and J.Hennen, (1997), “Readmission After Hospitalization for Congestive Heart Failure Among Medicare Beneficiaries,” Archives of Internal Medicine, 157, 99–104.
-
(1997)
Archives of Internal Medicine
, vol.157
, pp. 99-104
-
-
Krumholz, H.M.1
Parent, E.M.2
Tu, N.3
Vaccarino, V.4
Wang, Y.5
Radford, M.J.6
Hennen, J.7
-
41
-
-
84920993754
-
Bayesian Semiparametric Analysis of Semicompeting Risks Data: Investigating Hospital Readmission After a Pancreatic Cancer Diagnosis,
-
Series C
-
K.H.Lee, S.Haneuse, D.Schrag, and F.Dominici, (2015), “Bayesian Semiparametric Analysis of Semicompeting Risks Data:Investigating Hospital Readmission After a Pancreatic Cancer Diagnosis,” Journal of the Royal Statistical Society, Series C, 64, 253–273.
-
(2015)
Journal of the Royal Statistical Society
, vol.64
, pp. 253-273
-
-
Lee, K.H.1
Haneuse, S.2
Schrag, D.3
Dominici, F.4
-
42
-
-
84862236232
-
Investigating Hospital Heterogeneity With a Multi-State Frailty Model: Application to Nosocomial Pneumonia Disease in Intensive Care Units
-
B.Liquet, J.-F.Timsit, and V.Rondeau, (2012), “Investigating Hospital Heterogeneity With a Multi-State Frailty Model:Application to Nosocomial Pneumonia Disease in Intensive Care Units,” BMC Medical Research Methodology, 12, 79.
-
(2012)
BMC Medical Research Methodology
, vol.12
, pp. 79
-
-
Liquet, B.1
Timsit, J.-F.2
Rondeau, V.3
-
43
-
-
79251470391
-
Projections of the Cost of Cancer Care in the United States: 2010–2020
-
A.B.Mariotto, K.R.Yabroff, Y.Shao, E.J.Feuer, and M.L.Brown, (2011), “Projections of the Cost of Cancer Care in the United States:2010–2020,” Journal of the National Cancer Institute, 103, 117–128.
-
(2011)
Journal of the National Cancer Institute
, vol.103
, pp. 117-128
-
-
Mariotto, A.B.1
Yabroff, K.R.2
Shao, Y.3
Feuer, E.J.4
Brown, M.L.5
-
44
-
-
79952602238
-
Prediction of Random Effects in Linear and Generalized Linear Models Under Model Misspecification
-
C.E.McCulloch, and J.M.Neuhaus, (2011), “Prediction of Random Effects in Linear and Generalized Linear Models Under Model Misspecification,” Biometrics, 67, 270–279.
-
(2011)
Biometrics
, vol.67
, pp. 270-279
-
-
McCulloch, C.E.1
Neuhaus, J.M.2
-
45
-
-
82655175462
-
Misspecifying the Shape of a Random Effects Distribution: Why Getting It Wrong May Not Matter
-
C.E.McCulloch, J.M.Neuhaus, et al. (2011), “Misspecifying the Shape of a Random Effects Distribution:Why Getting It Wrong May Not Matter,” Statistical Science, 26, 388–402.
-
(2011)
Statistical Science
, vol.26
, pp. 388-402
-
-
McCulloch, C.E.1
Neuhaus, J.M.2
-
46
-
-
0033638572
-
Bayesian Estimators for Conditional Hazard Functions
-
I.McKeague, and M.Tighiouart, (2000), “Bayesian Estimators for Conditional Hazard Functions,” Biometrics, 56, 1007–1015.
-
(2000)
Biometrics
, vol.56
, pp. 1007-1015
-
-
McKeague, I.1
Tighiouart, M.2
-
47
-
-
70349243623
-
Comparison of Hierarchical Bayesian Models for Overdispersed Count Data Using DIC and Bayes’ Factors
-
R.B.Millar, (2009), “Comparison of Hierarchical Bayesian Models for Overdispersed Count Data Using DIC and Bayes’ Factors,” Biometrics, 65, 962–969.
-
(2009)
Biometrics
, vol.65
, pp. 962-969
-
-
Millar, R.B.1
-
48
-
-
77950032550
-
Markov Chain Sampling Methods for Dirichlet Process Mixture Models
-
R.M.Neal, (2000), “Markov Chain Sampling Methods for Dirichlet Process Mixture Models,” Journal of Computational and Graphical Statistics, 9, 249–265.
-
(2000)
Journal of Computational and Graphical Statistics
, vol.9
, pp. 249-265
-
-
Neal, R.M.1
-
49
-
-
79952156779
-
Estimation of Covariate Effects in Generalized Linear Mixed Models With Informative Cluster Sizes
-
J.M.Neuhaus, and C.E.McCulloch, (2011), “Estimation of Covariate Effects in Generalized Linear Mixed Models With Informative Cluster Sizes,” Biometrika, 98, 147–162.
-
(2011)
Biometrika
, vol.98
, pp. 147-162
-
-
Neuhaus, J.M.1
McCulloch, C.E.2
-
50
-
-
70350602793
-
-
New York: Springer
-
M.S.Nikulin, D.Commenges, and C.Huber, (2006), Probability, Statistics, and Modelling in Public Health, New York:Springer.
-
(2006)
Probability, Statistics, and Modelling in Public Health
-
-
Nikulin, M.S.1
Commenges, D.2
Huber, C.3
-
51
-
-
1842498078
-
Statistical Methods for Profiling Providers of Medical Care: Issues and Applications
-
S.T.Normand, M.E.Glickman, and C.A.Gatsonis, (1997), “Statistical Methods for Profiling Providers of Medical Care:Issues and Applications,” Journal of the American Statistical Association, 92, 803–814.
-
(1997)
Journal of the American Statistical Association
, vol.92
, pp. 803-814
-
-
Normand, S.T.1
Glickman, M.E.2
Gatsonis, C.A.3
-
52
-
-
34047215010
-
Flexible Random-Effects Models Using Bayesian Semi-Parametric Models: Applications to Institutional Comparisons
-
D.I.Ohlssen, L.D.Sharples, and D.J.Spiegelhalter, (2007), “Flexible Random-Effects Models Using Bayesian Semi-Parametric Models:Applications to Institutional Comparisons,” Statistics in Medicine, 26, 2088–2112.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 2088-2112
-
-
Ohlssen, D.I.1
Sharples, L.D.2
Spiegelhalter, D.J.3
-
53
-
-
34247185292
-
Regression Modeling of Semicompeting Risks Data
-
L.Peng, and J.Fine, (2007), “Regression Modeling of Semicompeting Risks Data,” Biometrics, 63, 96–108.
-
(2007)
Biometrics
, vol.63
, pp. 96-108
-
-
Peng, L.1
Fine, J.2
-
54
-
-
34248397713
-
Tutorial in Biostatistics: Competing Risks and Multi-State Models
-
H.Putter, M.Fiocco, and R.Geskus, (2007), “Tutorial in Biostatistics:Competing Risks and Multi-State Models,” Statistics in Medicine, 26, 2389–2430.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 2389-2430
-
-
Putter, H.1
Fiocco, M.2
Geskus, R.3
-
56
-
-
84863335452
-
frailtypack: An R Package for the Analysis of Correlated Survival Data with Frailty Models Using Penalized Likelihood Estimation or Parametrical Estimation
-
V.Rondeau, Y.Mazroui, and J.R.Gonzalez, (2012), “frailtypack:An R Package for the Analysis of Correlated Survival Data with Frailty Models Using Penalized Likelihood Estimation or Parametrical Estimation,” Journal of Statistical Software, 47, 1–24.
-
(2012)
Journal of Statistical Software
, vol.47
, pp. 1-24
-
-
Rondeau, V.1
Mazroui, Y.2
Gonzalez, J.R.3
-
58
-
-
84870061056
-
Systematic Review of Comorbidity Indices for Administrative Data
-
M.T.Sharabiani, P.Aylin, and A.Bottle, (2012), “Systematic Review of Comorbidity Indices for Administrative Data,” Medical Care, 50, 1109–1118.
-
(2012)
Medical Care
, vol.50
, pp. 1109-1118
-
-
Sharabiani, M.T.1
Aylin, P.2
Bottle, A.3
-
59
-
-
84857090212
-
Pancreatic Cancer Screening
-
E.J.Shin, and M.I.Canto, (2012), “Pancreatic Cancer Screening,” Gastroenterology Clinics of North America, 41, 143.
-
(2012)
Gastroenterology Clinics of North America
, vol.41
, pp. 143
-
-
Shin, E.J.1
Canto, M.I.2
-
60
-
-
0036435040
-
Bayesian Measures of Model Complexity and Fit,
-
Series B
-
D.J.Spiegelhalter, N.G.Best, B.P.Carlin, and A.Van Der Linde, (2002), “Bayesian Measures of Model Complexity and Fit,” Journal of the Royal Statistical Society, Series B, 64, 583–639.
-
(2002)
Journal of the Royal Statistical Society
, vol.64
, pp. 583-639
-
-
Spiegelhalter, D.J.1
Best, N.G.2
Carlin, B.P.3
Van Der Linde, A.4
-
61
-
-
84922354945
-
Exploring the Burden of Inpatient Readmissions After Major Cancer Surgery
-
K.B.Stitzenberg, Y.Chang, A.B.Smith, and M.E.Nielsen, (2015), “Exploring the Burden of Inpatient Readmissions After Major Cancer Surgery,” Journal of Clinical Oncology, 10, 455–464.
-
(2015)
Journal of Clinical Oncology
, vol.10
, pp. 455-464
-
-
Stitzenberg, K.B.1
Chang, Y.2
Smith, A.B.3
Nielsen, M.E.4
-
62
-
-
84905578061
-
Identification and Estimation of Survivor Average Causal Effects
-
E.J.Tchetgen Tchetgen, (2014), “Identification and Estimation of Survivor Average Causal Effects,” Statistics in Medicine, 33, 3601–3628.
-
(2014)
Statistics in Medicine
, vol.33
, pp. 3601-3628
-
-
Tchetgen Tchetgen, E.J.1
-
63
-
-
78349300631
-
Determinants of Preventable Readmissions in the United States: A Systematic Review
-
J.Vest, L.D.Gamm, B.A.Oxford, and K.M.Slawson, (2010), “Determinants of Preventable Readmissions in the United States:A Systematic Review,” Implementation Science, 5, 1–28.
-
(2010)
Implementation Science
, vol.5
, pp. 1-28
-
-
Vest, J.1
Gamm, L.D.2
Oxford, B.A.3
Slawson, K.M.4
-
64
-
-
0000472582
-
Hierarchical Generalized Linear Models and Frailty Models With Bayesian Nonparametric Mixing,
-
Series B
-
S.G.Walker, and B.K.Mallick, (1997), “Hierarchical Generalized Linear Models and Frailty Models With Bayesian Nonparametric Mixing,” Journal of the Royal Statistical Society, Series B, 59, 845–860.
-
(1997)
Journal of the Royal Statistical Society
, vol.59
, pp. 845-860
-
-
Walker, S.G.1
Mallick, B.K.2
-
65
-
-
79958783201
-
End-of-Life Care for Lung Cancer Patients in the United States and Ontario
-
J.Warren, L.Barbera, K.Bremner, K.Yabroff, J.Hoch, M.Barrett, J.Luo, and M.Krahn, (2011), “End-of-Life Care for Lung Cancer Patients in the United States and Ontario,” Journal of the National Cancer Institute, 103, 853–862.
-
(2011)
Journal of the National Cancer Institute
, vol.103
, pp. 853-862
-
-
Warren, J.1
Barbera, L.2
Bremner, K.3
Yabroff, K.4
Hoch, J.5
Barrett, M.6
Luo, J.7
Krahn, M.8
-
66
-
-
77956798454
-
Statistical Analysis of Illness-Death Processes and Semi-Competing Risks Data
-
J.Xu, J.Kalbfleisch, and B.Tai, (2010), “Statistical Analysis of Illness-Death Processes and Semi-Competing Risks Data,” Biometrics, 66, 716–725.
-
(2010)
Biometrics
, vol.66
, pp. 716-725
-
-
Xu, J.1
Kalbfleisch, J.2
Tai, B.3
-
67
-
-
84863237618
-
Estimating Treatment Effects With Treatment Switching via Semicompeting Risks Models: An Application to a Colorectal Cancer Study
-
D.Zeng, Q.Chen, M.-H.Chen, J.G.Ibrahim, et al. (2012), “Estimating Treatment Effects With Treatment Switching via Semicompeting Risks Models:An Application to a Colorectal Cancer Study,” Biometrika, 99, 167–184.
-
(2012)
Biometrika
, vol.99
, pp. 167-184
-
-
Zeng, D.1
Chen, Q.2
Chen, M.-H.3
Ibrahim, J.G.4
-
68
-
-
1642359207
-
Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by Death
-
J.L.Zhang, and D.B.Rubin, (2003), “Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by Death,” Journal of Educational and Behavioral Statistics, 28, 353–368.
-
(2003)
Journal of Educational and Behavioral Statistics
, vol.28
, pp. 353-368
-
-
Zhang, J.L.1
Rubin, D.B.2
-
69
-
-
84891902050
-
Bayesian Gamma Frailty Models for Survival Data With Semi-Competing Risks and Treatment Switching
-
Y.Zhang, M.-H.Chen, J.G.Ibrahim, D.Zeng, Q.Chen, Z.Pan, and X.Xue, (2014), “Bayesian Gamma Frailty Models for Survival Data With Semi-Competing Risks and Treatment Switching,” Lifetime Data Analysis, 20, 76–105.
-
(2014)
Lifetime Data Analysis
, vol.20
, pp. 76-105
-
-
Zhang, Y.1
Chen, M.-H.2
Ibrahim, J.G.3
Zeng, D.4
Chen, Q.5
Pan, Z.6
Xue, X.7
-
70
-
-
84863604544
-
Competing Risks Regression for Clustered Data
-
B.Zhou, J.Fine, A.Latouche, and M.Labopin, (2012), “Competing Risks Regression for Clustered Data,” Biostatistics, 13, 371–383.
-
(2012)
Biostatistics
, vol.13
, pp. 371-383
-
-
Zhou, B.1
Fine, J.2
Latouche, A.3
Labopin, M.4
|