메뉴 건너뛰기




Volumn 111, Issue 515, 2016, Pages 1075-1095

Hierarchical Models for Semicompeting Risks Data With Application to Quality of End-of-Life Care for Pancreatic Cancer

Author keywords

Bayesian survival analysis; Cluster correlated data; Illness death models; Reversible jump Markov chain Monte Carlo; Semicompeting risks; Shared frailty

Indexed keywords


EID: 84991627590     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2016.1164052     Document Type: Article
Times cited : (42)

References (70)
  • 1
    • 84964983620 scopus 로고    scopus 로고
    • American Cancer Society (2013), Cancer Facts & Figures 2013. Available at http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-036845.pdf
    • (2013) Cancer Facts & Figures 2013
  • 3
    • 0002055269 scopus 로고
    • Nonparametric Bayesian Inference From Right Censored Survival Data, Using the Gibbs Sampler
    • E.Arjas, and D.Gasbarra, (1994), “Nonparametric Bayesian Inference From Right Censored Survival Data, Using the Gibbs Sampler,” Statistica Sinica, 4, 505–524.
    • (1994) Statistica Sinica , vol.4 , pp. 505-524
    • Arjas, E.1    Gasbarra, D.2
  • 6
    • 33845221523 scopus 로고
    • On Conditional and Intrinsic Autoregressions
    • J.Besag, and C.Kooperberg, (1995), “On Conditional and Intrinsic Autoregressions,” Biometrika, 82, 733–746.
    • (1995) Biometrika , vol.82 , pp. 733-746
    • Besag, J.1    Kooperberg, C.2
  • 7
    • 84907829454 scopus 로고    scopus 로고
    • Acute Hospital Care is the Chief Driver of Regional Spending Variation in Medicare Patients With Advanced Cancer
    • G.A.Brooks, L.Li, H.Uno, M.J.Hassett, B.E.Landon, and D.Schrag, (2014), “Acute Hospital Care is the Chief Driver of Regional Spending Variation in Medicare Patients With Advanced Cancer,” Health Affairs, 33, 1793–1800.
    • (2014) Health Affairs , vol.33 , pp. 1793-1800
    • Brooks, G.A.1    Li, L.2    Uno, H.3    Hassett, M.J.4    Landon, B.E.5    Schrag, D.6
  • 8
    • 0000904732 scopus 로고    scopus 로고
    • A Semiparametric Bayesian Model for Randomised Block Designs
    • C.A.Bush, and S.N.MacEachern, (1996), “A Semiparametric Bayesian Model for Randomised Block Designs,” Biometrika, 83, 275–285.
    • (1996) Biometrika , vol.83 , pp. 275-285
    • Bush, C.A.1    MacEachern, S.N.2
  • 10
    • 39849106476 scopus 로고    scopus 로고
    • Competing Risks Analysis of Correlated Failure Time Data
    • B.E.Chen, J.L.Kramer, M.H.Greene, and P.S.Rosenberg, (2008), “Competing Risks Analysis of Correlated Failure Time Data,” Biometrics, 64, 172–179.
    • (2008) Biometrics , vol.64 , pp. 172-179
    • Chen, B.E.1    Kramer, J.L.2    Greene, M.H.3    Rosenberg, P.S.4
  • 11
    • 84858439975 scopus 로고    scopus 로고
    • CMS (2013a), Hospital Inpatient Quality Reporting Program, available at https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/HospitalQualityInits/HospitalRHQDAPU.html.
    • (2013) Hospital Inpatient Quality Reporting Program
  • 12
    • 84883713935 scopus 로고    scopus 로고
    • ——— (2013b), Readmissions Reduction Program, available at http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html.
    • (2013) Readmissions Reduction Program
  • 14
    • 34648843641 scopus 로고    scopus 로고
    • Causal Inference for Non-Mortality Outcomes in the Presence of Death
    • B.L.Egleston, D.O.Scharfstein, E.E.Freeman, and S.K.West, (2007), “Causal Inference for Non-Mortality Outcomes in the Presence of Death,” Biostatistics, 8, 526–545.
    • (2007) Biostatistics , vol.8 , pp. 526-545
    • Egleston, B.L.1    Scharfstein, D.O.2    Freeman, E.E.3    West, S.K.4
  • 15
    • 84855179168 scopus 로고    scopus 로고
    • The Relationship Between Hospital Admission Rates and Rehospitalizations
    • A.M.Epstein, A.K.Jha, and E.J.Orav, (2011), “The Relationship Between Hospital Admission Rates and Rehospitalizations,” New England Journal of Medicine, 365, 2287–2295.
    • (2011) New England Journal of Medicine , vol.365 , pp. 2287-2295
    • Epstein, A.M.1    Jha, A.K.2    Orav, E.J.3
  • 17
    • 0001120413 scopus 로고
    • A Bayesian Analysis of Some Nonparametric Problems
    • T.S.Ferguson, (1973), “A Bayesian Analysis of Some Nonparametric Problems,” The Annals of Statistics, 1, 209–230.
    • (1973) The Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 18
    • 0012837948 scopus 로고    scopus 로고
    • On Semi-Competing Risks Data
    • J.Fine, H.Jiang, and R.Chappell, (2001), “On Semi-Competing Risks Data,” Biometrika, 88, 907–919.
    • (2001) Biometrika , vol.88 , pp. 907-919
    • Fine, J.1    Jiang, H.2    Chappell, R.3
  • 22
    • 0029148987 scopus 로고
    • Bayesian Analysis of Proportional Hazards Models Built From Monotone Functions
    • A.E.Gelfand, and B.K.Mallick, (1995), “Bayesian Analysis of Proportional Hazards Models Built From Monotone Functions,” Biometrics, 51, 843–852.
    • (1995) Biometrics , vol.51 , pp. 843-852
    • Gelfand, A.E.1    Mallick, B.K.2
  • 24
    • 79959354598 scopus 로고    scopus 로고
    • Frailty-Based Competing Risks Model for Multivariate Survival Data
    • M.Gorfine, and L.Hsu, (2011), “Frailty-Based Competing Risks Model for Multivariate Survival Data,” Biometrics, 67, 415–426.
    • (2011) Biometrics , vol.67 , pp. 415-426
    • Gorfine, M.1    Hsu, L.2
  • 25
    • 84897065350 scopus 로고    scopus 로고
    • Calibrated Predictions for Multivariate Competing Risks Models
    • M.Gorfine, L.Hsu, D.M.Zucker, and G.Parmigiani, (2014), “Calibrated Predictions for Multivariate Competing Risks Models,” Lifetime Data Analysis, 20, 234–251.
    • (2014) Lifetime Data Analysis , vol.20 , pp. 234-251
    • Gorfine, M.1    Hsu, L.2    Zucker, D.M.3    Parmigiani, G.4
  • 26
    • 77956889087 scopus 로고
    • Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination
    • P.Green, (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,” Biometrika, 82, 711–732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 27
    • 84920285353 scopus 로고    scopus 로고
    • Bayesian Approach for Flexible Modeling of Semicompeting Risks Data
    • B.Han, M.Yu, J.J.Dignam, and P.J.Rathouz, (2014), “Bayesian Approach for Flexible Modeling of Semicompeting Risks Data,” Statistics in Medicine, 33, 5111–5125.
    • (2014) Statistics in Medicine , vol.33 , pp. 5111-5125
    • Han, B.1    Yu, M.2    Dignam, J.J.3    Rathouz, P.J.4
  • 28
    • 45849132989 scopus 로고    scopus 로고
    • The Separation of Timescales in Bayesian Survival Modeling of the Time-Varying Effect of a Time-Dependent Exposure
    • S.Haneuse, K.Rudser, and D.Gillen, (2008), “The Separation of Timescales in Bayesian Survival Modeling of the Time-Varying Effect of a Time-Dependent Exposure,” Biostatistics, 9, 400–410.
    • (2008) Biostatistics , vol.9 , pp. 400-410
    • Haneuse, S.1    Rudser, K.2    Gillen, D.3
  • 29
    • 33846106535 scopus 로고    scopus 로고
    • Inference for Mixtures of Finite Polya Tree Models
    • T.E.Hanson, (2006), “Inference for Mixtures of Finite Polya Tree Models,” Journal of the American Statistical Association, 101, 1548–1565.
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 1548-1565
    • Hanson, T.E.1
  • 30
    • 0035648841 scopus 로고    scopus 로고
    • On Heteroscedastic Hazards Regression Models: Theory and Application,
    • Series B
    • F.Hsieh, (2001), “On Heteroscedastic Hazards Regression Models:Theory and Application,” Journal of the Royal Statistical Society, Series B, 63, 63–79.
    • (2001) Journal of the Royal Statistical Society , vol.63 , pp. 63-79
    • Hsieh, F.1
  • 31
    • 37849004104 scopus 로고    scopus 로고
    • Regression Analysis Based on Semicompeting Risks Data,
    • Series B
    • J.Hsieh, W.Wang, and A.Ding, (2008), “Regression Analysis Based on Semicompeting Risks Data,” Journal of the Royal Statistical Society, Series B, 70, 3–20.
    • (2008) Journal of the Royal Statistical Society , vol.70 , pp. 3-20
    • Hsieh, J.1    Wang, W.2    Ding, A.3
  • 32
    • 35648987940 scopus 로고    scopus 로고
    • On Robustness of Marginal Regression Coefficient Estimates and Hazard Functions in Multivariate Survival Analysis of Family Data When the Frailty Distribution is Mis-Specified
    • L.Hsu, M.Gorfine, and K.Malone, (2007), “On Robustness of Marginal Regression Coefficient Estimates and Hazard Functions in Multivariate Survival Analysis of Family Data When the Frailty Distribution is Mis-Specified,” Statistics in Medicine, 26, 4657–4678.
    • (2007) Statistics in Medicine , vol.26 , pp. 4657-4678
    • Hsu, L.1    Gorfine, M.2    Malone, K.3
  • 34
    • 79951699237 scopus 로고    scopus 로고
    • Thirty-Day Readmission Rates for Medicare Beneficiaries by Race and Site of Care
    • K.E.Joynt, E.J.Orav, and A.K.Jha, (2011), “Thirty-Day Readmission Rates for Medicare Beneficiaries by Race and Site of Care,” Journal of the American Medical Association, 305, 675–681.
    • (2011) Journal of the American Medical Association , vol.305 , pp. 675-681
    • Joynt, K.E.1    Orav, E.J.2    Jha, A.K.3
  • 37
    • 33845868557 scopus 로고    scopus 로고
    • Analysing Multicentre Competing Risks Data With a Mixed Proportional Hazards Model for the Subdistribution
    • S.Katsahian, M.Resche-Rigon, S.Chevret, and R.Porcher, (2006), “Analysing Multicentre Competing Risks Data With a Mixed Proportional Hazards Model for the Subdistribution,” Statistics in Medicine, 25, 4267–4278.
    • (2006) Statistics in Medicine , vol.25 , pp. 4267-4278
    • Katsahian, S.1    Resche-Rigon, M.2    Chevret, S.3    Porcher, R.4
  • 38
    • 55249104054 scopus 로고    scopus 로고
    • Bayesian Semiparametric Multi-State Models
    • T.Kneib, and A.Hennerfeind, (2008), “Bayesian Semiparametric Multi-State Models,” Statistical Modeling, 8, 169–198.
    • (2008) Statistical Modeling , vol.8 , pp. 169-198
    • Kneib, T.1    Hennerfeind, A.2
  • 39
    • 79959697118 scopus 로고    scopus 로고
    • An Administrative Claims Measure Suitable for Profiling Hospital Performance Based on 30-Day All-Cause Readmission Rates Among Patients With Acute Myocardial Infarction
    • H.M.Krumholz, Z.Lin, E.E.Drye, M.M.Desai, L.F.Han, M.T.Rapp, J.A.Mattera, and S.-L.T.Normand, (2011), “An Administrative Claims Measure Suitable for Profiling Hospital Performance Based on 30-Day All-Cause Readmission Rates Among Patients With Acute Myocardial Infarction,” Circulation:Cardiovascular Quality and Outcomes, 4, 243–252.
    • (2011) Circulation: Cardiovascular Quality and Outcomes , vol.4 , pp. 243-252
    • Krumholz, H.M.1    Lin, Z.2    Drye, E.E.3    Desai, M.M.4    Han, L.F.5    Rapp, M.T.6    Mattera, J.A.7    Normand, S.-L.T.8
  • 41
    • 84920993754 scopus 로고    scopus 로고
    • Bayesian Semiparametric Analysis of Semicompeting Risks Data: Investigating Hospital Readmission After a Pancreatic Cancer Diagnosis,
    • Series C
    • K.H.Lee, S.Haneuse, D.Schrag, and F.Dominici, (2015), “Bayesian Semiparametric Analysis of Semicompeting Risks Data:Investigating Hospital Readmission After a Pancreatic Cancer Diagnosis,” Journal of the Royal Statistical Society, Series C, 64, 253–273.
    • (2015) Journal of the Royal Statistical Society , vol.64 , pp. 253-273
    • Lee, K.H.1    Haneuse, S.2    Schrag, D.3    Dominici, F.4
  • 42
    • 84862236232 scopus 로고    scopus 로고
    • Investigating Hospital Heterogeneity With a Multi-State Frailty Model: Application to Nosocomial Pneumonia Disease in Intensive Care Units
    • B.Liquet, J.-F.Timsit, and V.Rondeau, (2012), “Investigating Hospital Heterogeneity With a Multi-State Frailty Model:Application to Nosocomial Pneumonia Disease in Intensive Care Units,” BMC Medical Research Methodology, 12, 79.
    • (2012) BMC Medical Research Methodology , vol.12 , pp. 79
    • Liquet, B.1    Timsit, J.-F.2    Rondeau, V.3
  • 44
    • 79952602238 scopus 로고    scopus 로고
    • Prediction of Random Effects in Linear and Generalized Linear Models Under Model Misspecification
    • C.E.McCulloch, and J.M.Neuhaus, (2011), “Prediction of Random Effects in Linear and Generalized Linear Models Under Model Misspecification,” Biometrics, 67, 270–279.
    • (2011) Biometrics , vol.67 , pp. 270-279
    • McCulloch, C.E.1    Neuhaus, J.M.2
  • 45
    • 82655175462 scopus 로고    scopus 로고
    • Misspecifying the Shape of a Random Effects Distribution: Why Getting It Wrong May Not Matter
    • C.E.McCulloch, J.M.Neuhaus, et al. (2011), “Misspecifying the Shape of a Random Effects Distribution:Why Getting It Wrong May Not Matter,” Statistical Science, 26, 388–402.
    • (2011) Statistical Science , vol.26 , pp. 388-402
    • McCulloch, C.E.1    Neuhaus, J.M.2
  • 46
    • 0033638572 scopus 로고    scopus 로고
    • Bayesian Estimators for Conditional Hazard Functions
    • I.McKeague, and M.Tighiouart, (2000), “Bayesian Estimators for Conditional Hazard Functions,” Biometrics, 56, 1007–1015.
    • (2000) Biometrics , vol.56 , pp. 1007-1015
    • McKeague, I.1    Tighiouart, M.2
  • 47
    • 70349243623 scopus 로고    scopus 로고
    • Comparison of Hierarchical Bayesian Models for Overdispersed Count Data Using DIC and Bayes’ Factors
    • R.B.Millar, (2009), “Comparison of Hierarchical Bayesian Models for Overdispersed Count Data Using DIC and Bayes’ Factors,” Biometrics, 65, 962–969.
    • (2009) Biometrics , vol.65 , pp. 962-969
    • Millar, R.B.1
  • 48
    • 77950032550 scopus 로고    scopus 로고
    • Markov Chain Sampling Methods for Dirichlet Process Mixture Models
    • R.M.Neal, (2000), “Markov Chain Sampling Methods for Dirichlet Process Mixture Models,” Journal of Computational and Graphical Statistics, 9, 249–265.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 49
    • 79952156779 scopus 로고    scopus 로고
    • Estimation of Covariate Effects in Generalized Linear Mixed Models With Informative Cluster Sizes
    • J.M.Neuhaus, and C.E.McCulloch, (2011), “Estimation of Covariate Effects in Generalized Linear Mixed Models With Informative Cluster Sizes,” Biometrika, 98, 147–162.
    • (2011) Biometrika , vol.98 , pp. 147-162
    • Neuhaus, J.M.1    McCulloch, C.E.2
  • 52
    • 34047215010 scopus 로고    scopus 로고
    • Flexible Random-Effects Models Using Bayesian Semi-Parametric Models: Applications to Institutional Comparisons
    • D.I.Ohlssen, L.D.Sharples, and D.J.Spiegelhalter, (2007), “Flexible Random-Effects Models Using Bayesian Semi-Parametric Models:Applications to Institutional Comparisons,” Statistics in Medicine, 26, 2088–2112.
    • (2007) Statistics in Medicine , vol.26 , pp. 2088-2112
    • Ohlssen, D.I.1    Sharples, L.D.2    Spiegelhalter, D.J.3
  • 53
    • 34247185292 scopus 로고    scopus 로고
    • Regression Modeling of Semicompeting Risks Data
    • L.Peng, and J.Fine, (2007), “Regression Modeling of Semicompeting Risks Data,” Biometrics, 63, 96–108.
    • (2007) Biometrics , vol.63 , pp. 96-108
    • Peng, L.1    Fine, J.2
  • 54
    • 34248397713 scopus 로고    scopus 로고
    • Tutorial in Biostatistics: Competing Risks and Multi-State Models
    • H.Putter, M.Fiocco, and R.Geskus, (2007), “Tutorial in Biostatistics:Competing Risks and Multi-State Models,” Statistics in Medicine, 26, 2389–2430.
    • (2007) Statistics in Medicine , vol.26 , pp. 2389-2430
    • Putter, H.1    Fiocco, M.2    Geskus, R.3
  • 55
  • 56
    • 84863335452 scopus 로고    scopus 로고
    • frailtypack: An R Package for the Analysis of Correlated Survival Data with Frailty Models Using Penalized Likelihood Estimation or Parametrical Estimation
    • V.Rondeau, Y.Mazroui, and J.R.Gonzalez, (2012), “frailtypack:An R Package for the Analysis of Correlated Survival Data with Frailty Models Using Penalized Likelihood Estimation or Parametrical Estimation,” Journal of Statistical Software, 47, 1–24.
    • (2012) Journal of Statistical Software , vol.47 , pp. 1-24
    • Rondeau, V.1    Mazroui, Y.2    Gonzalez, J.R.3
  • 58
    • 84870061056 scopus 로고    scopus 로고
    • Systematic Review of Comorbidity Indices for Administrative Data
    • M.T.Sharabiani, P.Aylin, and A.Bottle, (2012), “Systematic Review of Comorbidity Indices for Administrative Data,” Medical Care, 50, 1109–1118.
    • (2012) Medical Care , vol.50 , pp. 1109-1118
    • Sharabiani, M.T.1    Aylin, P.2    Bottle, A.3
  • 62
    • 84905578061 scopus 로고    scopus 로고
    • Identification and Estimation of Survivor Average Causal Effects
    • E.J.Tchetgen Tchetgen, (2014), “Identification and Estimation of Survivor Average Causal Effects,” Statistics in Medicine, 33, 3601–3628.
    • (2014) Statistics in Medicine , vol.33 , pp. 3601-3628
    • Tchetgen Tchetgen, E.J.1
  • 63
    • 78349300631 scopus 로고    scopus 로고
    • Determinants of Preventable Readmissions in the United States: A Systematic Review
    • J.Vest, L.D.Gamm, B.A.Oxford, and K.M.Slawson, (2010), “Determinants of Preventable Readmissions in the United States:A Systematic Review,” Implementation Science, 5, 1–28.
    • (2010) Implementation Science , vol.5 , pp. 1-28
    • Vest, J.1    Gamm, L.D.2    Oxford, B.A.3    Slawson, K.M.4
  • 64
    • 0000472582 scopus 로고    scopus 로고
    • Hierarchical Generalized Linear Models and Frailty Models With Bayesian Nonparametric Mixing,
    • Series B
    • S.G.Walker, and B.K.Mallick, (1997), “Hierarchical Generalized Linear Models and Frailty Models With Bayesian Nonparametric Mixing,” Journal of the Royal Statistical Society, Series B, 59, 845–860.
    • (1997) Journal of the Royal Statistical Society , vol.59 , pp. 845-860
    • Walker, S.G.1    Mallick, B.K.2
  • 66
    • 77956798454 scopus 로고    scopus 로고
    • Statistical Analysis of Illness-Death Processes and Semi-Competing Risks Data
    • J.Xu, J.Kalbfleisch, and B.Tai, (2010), “Statistical Analysis of Illness-Death Processes and Semi-Competing Risks Data,” Biometrics, 66, 716–725.
    • (2010) Biometrics , vol.66 , pp. 716-725
    • Xu, J.1    Kalbfleisch, J.2    Tai, B.3
  • 67
    • 84863237618 scopus 로고    scopus 로고
    • Estimating Treatment Effects With Treatment Switching via Semicompeting Risks Models: An Application to a Colorectal Cancer Study
    • D.Zeng, Q.Chen, M.-H.Chen, J.G.Ibrahim, et al. (2012), “Estimating Treatment Effects With Treatment Switching via Semicompeting Risks Models:An Application to a Colorectal Cancer Study,” Biometrika, 99, 167–184.
    • (2012) Biometrika , vol.99 , pp. 167-184
    • Zeng, D.1    Chen, Q.2    Chen, M.-H.3    Ibrahim, J.G.4
  • 68
    • 1642359207 scopus 로고    scopus 로고
    • Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by Death
    • J.L.Zhang, and D.B.Rubin, (2003), “Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by Death,” Journal of Educational and Behavioral Statistics, 28, 353–368.
    • (2003) Journal of Educational and Behavioral Statistics , vol.28 , pp. 353-368
    • Zhang, J.L.1    Rubin, D.B.2
  • 69
    • 84891902050 scopus 로고    scopus 로고
    • Bayesian Gamma Frailty Models for Survival Data With Semi-Competing Risks and Treatment Switching
    • Y.Zhang, M.-H.Chen, J.G.Ibrahim, D.Zeng, Q.Chen, Z.Pan, and X.Xue, (2014), “Bayesian Gamma Frailty Models for Survival Data With Semi-Competing Risks and Treatment Switching,” Lifetime Data Analysis, 20, 76–105.
    • (2014) Lifetime Data Analysis , vol.20 , pp. 76-105
    • Zhang, Y.1    Chen, M.-H.2    Ibrahim, J.G.3    Zeng, D.4    Chen, Q.5    Pan, Z.6    Xue, X.7
  • 70
    • 84863604544 scopus 로고    scopus 로고
    • Competing Risks Regression for Clustered Data
    • B.Zhou, J.Fine, A.Latouche, and M.Labopin, (2012), “Competing Risks Regression for Clustered Data,” Biostatistics, 13, 371–383.
    • (2012) Biostatistics , vol.13 , pp. 371-383
    • Zhou, B.1    Fine, J.2    Latouche, A.3    Labopin, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.