메뉴 건너뛰기




Volumn 68, Issue 2, 2017, Pages 367-385

Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization

Author keywords

Cubic modeling; Newton type methods; Regularization; Smooth unconstrained minimization

Indexed keywords

COMPUTER APPLICATIONS;

EID: 84991328710     PISSN: 09255001     EISSN: 15732916     Source Type: Journal    
DOI: 10.1007/s10898-016-0475-8     Document Type: Article
Times cited : (70)

References (23)
  • 1
    • 84921701625 scopus 로고    scopus 로고
    • On the use of iterative methods in cubic regularization for unconstrained optimization
    • Bianconcini, T., Liuzzi, G., Morini, B., Sciandrone, M.: On the use of iterative methods in cubic regularization for unconstrained optimization. Comput. Optim. Appl. 60(1), 35–57 (2015)
    • (2015) Comput. Optim. Appl , vol.60 , Issue.1 , pp. 35-57
    • Bianconcini, T.1    Liuzzi, G.2    Morini, B.3    Sciandrone, M.4
  • 4
    • 84907533558 scopus 로고    scopus 로고
    • Spectral projected gradient methods: review and perspectives
    • Birgin, E.G., Martínez, J.M., Raydan, M.: Spectral projected gradient methods: review and perspectives. J. Stat. Softw. 60(3) (2014)
    • (2014) J. Stat. Softw , vol.60 , Issue.3
    • Birgin, E.G.1    Martínez, J.M.2    Raydan, M.3
  • 5
    • 79251493375 scopus 로고    scopus 로고
    • On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization
    • Cartis, C., Gould, N.I.M., Toint, PhL: On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization. SIAM J. Optim. 20, 2833–2852 (2010)
    • (2010) SIAM J. Optim , vol.20 , pp. 2833-2852
    • Cartis, C.1    Gould, N.I.M.2    Toint, P.L.3
  • 6
    • 79952763936 scopus 로고    scopus 로고
    • Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results
    • Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. Ser. A 127, 245–295 (2011)
    • (2011) Math. Program. Ser. A , vol.127 , pp. 245-295
    • Cartis, C.1    Gould, N.I.M.2    Toint, P.L.3
  • 7
    • 81255179401 scopus 로고    scopus 로고
    • Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity
    • Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity. Math. Program. Ser. A 130, 295–319 (2011)
    • (2011) Math. Program. Ser. A , vol.130 , pp. 295-319
    • Cartis, C.1    Gould, N.I.M.2    Toint, P.L.3
  • 8
    • 0002336672 scopus 로고
    • A trust-region strategy for nonlinear equality constrained optimization
    • Boggs P, Byrd R, Schnabel R, Publications SIAM, (eds), SIAM Publications, Philadelphia
    • Celis, M.R., Dennis, J.E., Tapia, R.A.: A trust-region strategy for nonlinear equality constrained optimization. In: Boggs, P., Byrd, R., Schnabel, R., Publications, S.I.A.M. (eds.) Numerical Optimization, pp. 71–82. SIAM Publications, Philadelphia (1985)
    • (1985) Numerical Optimization , pp. 71-82
    • Celis, M.R.1    Dennis, J.E.2    Tapia, R.A.3
  • 10
    • 0031542597 scopus 로고    scopus 로고
    • A global convergence theory for general trust-region-based algorithms for equality constrained optimization
    • Dennis, J.E., El-Alem, M., Maciel, M.C.: A global convergence theory for general trust-region-based algorithms for equality constrained optimization. SIAM J. Optim. 7, 177–207 (1997)
    • (1997) SIAM J. Optim , vol.7 , pp. 177-207
    • Dennis, J.E.1    El-Alem, M.2    Maciel, M.C.3
  • 12
    • 0000105029 scopus 로고
    • A robust trust region algorithm with a nonmonotonic penalty parameter scheme for constrained optimization
    • El-Alem, M.: A robust trust region algorithm with a nonmonotonic penalty parameter scheme for constrained optimization. SIAM J. Optim. 5, 348–378 (1995)
    • (1995) SIAM J. Optim , vol.5 , pp. 348-378
    • El-Alem, M.1
  • 13
    • 0000480619 scopus 로고    scopus 로고
    • Nonlinear programming algorithms using trust regions and augmented Lagrangians with nonmonotone penalty parameters
    • Gomes, F.M., Maciel, M.C., Martínez, J.M.: Nonlinear programming algorithms using trust regions and augmented Lagrangians with nonmonotone penalty parameters. Math. Program. 84, 161–200 (1999)
    • (1999) Math. Program , vol.84 , pp. 161-200
    • Gomes, F.M.1    Maciel, M.C.2    Martínez, J.M.3
  • 14
    • 84937967811 scopus 로고    scopus 로고
    • On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization
    • Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization. Math. Program. 152, 491–520 (2015)
    • (2015) Math. Program , vol.152 , pp. 491-520
    • Grapiglia, G.N.1    Yuan, J.2    Yuan, Y.-X.3
  • 15
    • 77951273748 scopus 로고
    • The modification of Newton’s method for unconstrained optimization by bounding cubic terms, Technical Report NA/12. University of Cambridge
    • Griewank, A.: The modification of Newton’s method for unconstrained optimization by bounding cubic terms, Technical Report NA/12. University of Cambridge, Department of Applied Mathematics and Theoretical Physics (1981)
    • (1981) Department of Applied Mathematics and Theoretical Physics
    • Griewank, A.1
  • 16
    • 84865617925 scopus 로고    scopus 로고
    • Updating the regularization parameter in the adaptive cubic regularization algorithm
    • Gould, N.I.M., Porcelli, M., Toint, PhL: Updating the regularization parameter in the adaptive cubic regularization algorithm. Comput. Optim. Appl. 53, 1–22 (2012)
    • (2012) Comput. Optim. Appl , vol.53 , pp. 1-22
    • Gould, N.I.M.1    Porcelli, M.2    Toint, P.L.3
  • 17
    • 84924222053 scopus 로고    scopus 로고
    • Algebraic rules for quadratic regularization of Newton’s method
    • Karas, E.W., Santos, S.A., Svaiter, B.F.: Algebraic rules for quadratic regularization of Newton’s method. Comput. Optim. Appl. 60(2), 343–376 (2015)
    • (2015) Comput. Optim. Appl , vol.60 , Issue.2 , pp. 343-376
    • Karas, E.W.1    Santos, S.A.2    Svaiter, B.F.3
  • 18
    • 84862021931 scopus 로고    scopus 로고
    • A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization
    • Lu, S., Wei, Z., Li, L.: A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization. Comput. Optim. Appl. 51, 551–573 (2012)
    • (2012) Comput. Optim. Appl , vol.51 , pp. 551-573
    • Lu, S.1    Wei, Z.2    Li, L.3
  • 19
    • 0035537443 scopus 로고    scopus 로고
    • Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming
    • Martínez, J.M.: Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming. J. Optim. Theory Appl. 111, 39–58 (2001)
    • (2001) J. Optim. Theory Appl , vol.111 , pp. 39-58
    • Martínez, J.M.1
  • 20
    • 84941995313 scopus 로고    scopus 로고
    • Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization
    • Martínez, J.M., Raydan, M.: Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization. J. Glob. Optim. 63(2), 319–342 (2015)
    • (2015) J. Glob. Optim , vol.63 , Issue.2 , pp. 319-342
    • Martínez, J.M.1    Raydan, M.2
  • 21
    • 33646730150 scopus 로고    scopus 로고
    • Cubic regularization of Newton’s method and its global performance
    • Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton’s method and its global performance. Math. Program. 108(1), 177–205 (2006)
    • (2006) Math. Program , vol.108 , Issue.1 , pp. 177-205
    • Nesterov, Y.1    Polyak, B.T.2
  • 22
    • 34547474583 scopus 로고    scopus 로고
    • Accelerating the cubic regularization of Newton’s method on convex problems
    • Nesterov, Y.: Accelerating the cubic regularization of Newton’s method on convex problems. Math. Program. Ser. B 112, 159–181 (2008)
    • (2008) Math. Program. Ser. B , vol.112 , pp. 159-181
    • Nesterov, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.