-
1
-
-
84921701625
-
On the use of iterative methods in cubic regularization for unconstrained optimization
-
Bianconcini, T., Liuzzi, G., Morini, B., Sciandrone, M.: On the use of iterative methods in cubic regularization for unconstrained optimization. Comput. Optim. Appl. 60(1), 35–57 (2015)
-
(2015)
Comput. Optim. Appl
, vol.60
, Issue.1
, pp. 35-57
-
-
Bianconcini, T.1
Liuzzi, G.2
Morini, B.3
Sciandrone, M.4
-
2
-
-
84976893444
-
-
University of Namur, Namur
-
Birgin, E.G., Gardenghi, J.L., Martínez, J.M., Santos, S.A., Toint, PhL: Worst-Case Evaluation Complexity for Unconstrained Nonlinear Optimization using high-order regularized models, Technical Report naXys-05-2015, Namur Center for Complex Systems (naXys). University of Namur, Namur (2015)
-
(2015)
Worst-Case Evaluation Complexity for Unconstrained Nonlinear Optimization using high-order regularized models, Technical Report naXys-05-2015, Namur Center for Complex Systems (naXys)
-
-
Birgin, E.G.1
Gardenghi, J.L.2
Martínez, J.M.3
Santos, S.A.4
Toint, P.L.5
-
4
-
-
84907533558
-
Spectral projected gradient methods: review and perspectives
-
Birgin, E.G., Martínez, J.M., Raydan, M.: Spectral projected gradient methods: review and perspectives. J. Stat. Softw. 60(3) (2014)
-
(2014)
J. Stat. Softw
, vol.60
, Issue.3
-
-
Birgin, E.G.1
Martínez, J.M.2
Raydan, M.3
-
5
-
-
79251493375
-
On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization
-
Cartis, C., Gould, N.I.M., Toint, PhL: On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization. SIAM J. Optim. 20, 2833–2852 (2010)
-
(2010)
SIAM J. Optim
, vol.20
, pp. 2833-2852
-
-
Cartis, C.1
Gould, N.I.M.2
Toint, P.L.3
-
6
-
-
79952763936
-
Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results
-
Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. Ser. A 127, 245–295 (2011)
-
(2011)
Math. Program. Ser. A
, vol.127
, pp. 245-295
-
-
Cartis, C.1
Gould, N.I.M.2
Toint, P.L.3
-
7
-
-
81255179401
-
Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity
-
Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity. Math. Program. Ser. A 130, 295–319 (2011)
-
(2011)
Math. Program. Ser. A
, vol.130
, pp. 295-319
-
-
Cartis, C.1
Gould, N.I.M.2
Toint, P.L.3
-
8
-
-
0002336672
-
A trust-region strategy for nonlinear equality constrained optimization
-
Boggs P, Byrd R, Schnabel R, Publications SIAM, (eds), SIAM Publications, Philadelphia
-
Celis, M.R., Dennis, J.E., Tapia, R.A.: A trust-region strategy for nonlinear equality constrained optimization. In: Boggs, P., Byrd, R., Schnabel, R., Publications, S.I.A.M. (eds.) Numerical Optimization, pp. 71–82. SIAM Publications, Philadelphia (1985)
-
(1985)
Numerical Optimization
, pp. 71-82
-
-
Celis, M.R.1
Dennis, J.E.2
Tapia, R.A.3
-
10
-
-
0031542597
-
A global convergence theory for general trust-region-based algorithms for equality constrained optimization
-
Dennis, J.E., El-Alem, M., Maciel, M.C.: A global convergence theory for general trust-region-based algorithms for equality constrained optimization. SIAM J. Optim. 7, 177–207 (1997)
-
(1997)
SIAM J. Optim
, vol.7
, pp. 177-207
-
-
Dennis, J.E.1
El-Alem, M.2
Maciel, M.C.3
-
11
-
-
84976896438
-
-
Sherbrooke, Canada
-
Dussault,J.,P.: Simple unified convergence proofs for the trust-region methods and a new ARC variant, Technical Report, University of Sherbrooke, Sherbrooke, Canada (2015)
-
(2015)
Simple unified convergence proofs for the trust-region methods and a new ARC variant, Technical Report, University of Sherbrooke
-
-
Dussault, J.P.1
-
12
-
-
0000105029
-
A robust trust region algorithm with a nonmonotonic penalty parameter scheme for constrained optimization
-
El-Alem, M.: A robust trust region algorithm with a nonmonotonic penalty parameter scheme for constrained optimization. SIAM J. Optim. 5, 348–378 (1995)
-
(1995)
SIAM J. Optim
, vol.5
, pp. 348-378
-
-
El-Alem, M.1
-
13
-
-
0000480619
-
Nonlinear programming algorithms using trust regions and augmented Lagrangians with nonmonotone penalty parameters
-
Gomes, F.M., Maciel, M.C., Martínez, J.M.: Nonlinear programming algorithms using trust regions and augmented Lagrangians with nonmonotone penalty parameters. Math. Program. 84, 161–200 (1999)
-
(1999)
Math. Program
, vol.84
, pp. 161-200
-
-
Gomes, F.M.1
Maciel, M.C.2
Martínez, J.M.3
-
14
-
-
84937967811
-
On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization
-
Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization. Math. Program. 152, 491–520 (2015)
-
(2015)
Math. Program
, vol.152
, pp. 491-520
-
-
Grapiglia, G.N.1
Yuan, J.2
Yuan, Y.-X.3
-
15
-
-
77951273748
-
The modification of Newton’s method for unconstrained optimization by bounding cubic terms, Technical Report NA/12. University of Cambridge
-
Griewank, A.: The modification of Newton’s method for unconstrained optimization by bounding cubic terms, Technical Report NA/12. University of Cambridge, Department of Applied Mathematics and Theoretical Physics (1981)
-
(1981)
Department of Applied Mathematics and Theoretical Physics
-
-
Griewank, A.1
-
16
-
-
84865617925
-
Updating the regularization parameter in the adaptive cubic regularization algorithm
-
Gould, N.I.M., Porcelli, M., Toint, PhL: Updating the regularization parameter in the adaptive cubic regularization algorithm. Comput. Optim. Appl. 53, 1–22 (2012)
-
(2012)
Comput. Optim. Appl
, vol.53
, pp. 1-22
-
-
Gould, N.I.M.1
Porcelli, M.2
Toint, P.L.3
-
17
-
-
84924222053
-
Algebraic rules for quadratic regularization of Newton’s method
-
Karas, E.W., Santos, S.A., Svaiter, B.F.: Algebraic rules for quadratic regularization of Newton’s method. Comput. Optim. Appl. 60(2), 343–376 (2015)
-
(2015)
Comput. Optim. Appl
, vol.60
, Issue.2
, pp. 343-376
-
-
Karas, E.W.1
Santos, S.A.2
Svaiter, B.F.3
-
18
-
-
84862021931
-
A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization
-
Lu, S., Wei, Z., Li, L.: A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization. Comput. Optim. Appl. 51, 551–573 (2012)
-
(2012)
Comput. Optim. Appl
, vol.51
, pp. 551-573
-
-
Lu, S.1
Wei, Z.2
Li, L.3
-
19
-
-
0035537443
-
Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming
-
Martínez, J.M.: Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming. J. Optim. Theory Appl. 111, 39–58 (2001)
-
(2001)
J. Optim. Theory Appl
, vol.111
, pp. 39-58
-
-
Martínez, J.M.1
-
20
-
-
84941995313
-
Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization
-
Martínez, J.M., Raydan, M.: Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization. J. Glob. Optim. 63(2), 319–342 (2015)
-
(2015)
J. Glob. Optim
, vol.63
, Issue.2
, pp. 319-342
-
-
Martínez, J.M.1
Raydan, M.2
-
21
-
-
33646730150
-
Cubic regularization of Newton’s method and its global performance
-
Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton’s method and its global performance. Math. Program. 108(1), 177–205 (2006)
-
(2006)
Math. Program
, vol.108
, Issue.1
, pp. 177-205
-
-
Nesterov, Y.1
Polyak, B.T.2
-
22
-
-
34547474583
-
Accelerating the cubic regularization of Newton’s method on convex problems
-
Nesterov, Y.: Accelerating the cubic regularization of Newton’s method on convex problems. Math. Program. Ser. B 112, 159–181 (2008)
-
(2008)
Math. Program. Ser. B
, vol.112
, pp. 159-181
-
-
Nesterov, Y.1
|