메뉴 건너뛰기




Volumn 63, Issue 2, 2015, Pages 319-342

Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization

Author keywords

Cubic modeling; Newton type methods; Smooth unconstrained minimization; Trust region strategies

Indexed keywords

CONVERGENCE ANALYSIS; LOCAL MINIMIZER; NEWTON-TYPE METHODS; STATIONARY POINTS; TRUST REGION; TRUST REGION ALGORITHMS; UNCONSTRAINED MINIMIZATION; VARIABLE METRIC;

EID: 84941995313     PISSN: 09255001     EISSN: 15732916     Source Type: Journal    
DOI: 10.1007/s10898-015-0278-3     Document Type: Article
Times cited : (8)

References (28)
  • 1
    • 84901198325 scopus 로고    scopus 로고
    • Interior-point methods for nonconvex nonlinear programming: cubic regularization
    • Benson, H.Y., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: cubic regularization. Comput. Optim. Appl. 58, 323–346 (2014)
    • (2014) Comput. Optim. Appl. , vol.58 , pp. 323-346
    • Benson, H.Y.1    Shanno, D.F.2
  • 2
    • 84921701625 scopus 로고    scopus 로고
    • On the use of iterative methods in cubic regularization for unconstrained optimization
    • Bianconcini, T., Liuzzi, G., Morini, B., Sciandrone, M.: On the use of iterative methods in cubic regularization for unconstrained optimization. Comput. Optim. Appl. 60, 35–57 (2015)
    • (2015) Comput. Optim. Appl. , vol.60 , pp. 35-57
    • Bianconcini, T.1    Liuzzi, G.2    Morini, B.3    Sciandrone, M.4
  • 3
    • 0034345420 scopus 로고    scopus 로고
    • Nonmonotone spectral projected gradient methods on convex sets
    • Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)
    • (2000) SIAM J. Optim. , vol.10 , pp. 1196-1211
    • Birgin, E.G.1    Martínez, J.M.2    Raydan, M.3
  • 4
    • 67649703350 scopus 로고    scopus 로고
    • Spectral projected gradient methods
    • Floudas CA, Pardalos PM, (eds), Chapter 19, Springer, Berlin
    • Birgin, E.G., Martínez, J.M., Raydan, M.: Spectral projected gradient methods. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, vol. Chapter 19, 2nd edn, pp. 3652–3659. Springer, Berlin (2009)
    • (2009) Encyclopedia of Optimization , pp. 3652-3659
    • Birgin, E.G.1    Martínez, J.M.2    Raydan, M.3
  • 5
    • 84907533558 scopus 로고    scopus 로고
    • Spectral Projected Gradient methods: Review and Perspectives
    • Birgin, E.G., Martínez, J.M., Raydan, M.: Spectral Projected Gradient methods: Review and Perspectives. J. Stat. Softw. 60(3) (2014)
    • (2014) J. Stat. Softw , vol.60 , Issue.3
    • Birgin, E.G.1    Martínez, J.M.2    Raydan, M.3
  • 6
    • 79952763936 scopus 로고    scopus 로고
    • Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results
    • Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. Ser. A 127, 245–295 (2011)
    • (2011) Math. Program. Ser. A , vol.127 , pp. 245-295
    • Cartis, C.1    Gould, N.I.M.2    Toint, P.L.3
  • 7
    • 81255179401 scopus 로고    scopus 로고
    • Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity
    • Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity. Math. Program. Ser. A 130, 295–319 (2011)
    • (2011) Math. Program. Ser. A , vol.130 , pp. 295-319
    • Cartis, C.1    Gould, N.I.M.2    Toint, P.L.3
  • 8
    • 84886236255 scopus 로고    scopus 로고
    • On the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimization
    • Cartis, C., Gould, N.I.M., Toint, PhL: On the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimization. SIAM J. Opt. 23, 1553–1574 (2013)
    • (2013) SIAM J. Opt. , vol.23 , pp. 1553-1574
    • Cartis, C.1    Gould, N.I.M.2    Toint, P.L.3
  • 9
    • 0031346501 scopus 로고    scopus 로고
    • A trust region algorithm for unconstrained optimization
    • Corradi, G.: A trust region algorithm for unconstrained optimization. Int. J. Comput. Math. 65, 109–119 (1997)
    • (1997) Int. J. Comput. Math. , vol.65 , pp. 109-119
    • Corradi, G.1
  • 13
    • 0000955796 scopus 로고
    • Computing optimal locally constrained steps
    • Gay, D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2, 186–197 (1981)
    • (1981) SIAM J. Sci. Stat. Comput. , vol.2 , pp. 186-197
    • Gay, D.M.1
  • 14
    • 79952771183 scopus 로고
    • The modification of Newtons method for unconstrained optimization by bounding cubic terms, Technical Report NA/12. Department of Applied Mathematics and Theoretical Physics
    • Griewank, A.: The modification of Newtons method for unconstrained optimization by bounding cubic terms, Technical Report NA/12. Department of Applied Mathematics and Theoretical Physics, University of Cambridge (1981)
    • (1981) University of Cambridge
    • Griewank, A.1
  • 15
    • 84865617925 scopus 로고    scopus 로고
    • Updating the regularization parameter in the adaptive cubic regularization algorithm
    • Gould, N.I.M., Porcelli, M., Toint, PhL: Updating the regularization parameter in the adaptive cubic regularization algorithm. Comput. Optim. Appl. 53, 1–22 (2012)
    • (2012) Comput. Optim. Appl. , vol.53 , pp. 1-22
    • Gould, N.I.M.1    Porcelli, M.2    Toint, P.L.3
  • 16
    • 0026874579 scopus 로고
    • A quadratic-tensor model algorithm for nonlinear least-squares problems with linear constraints
    • Hanson, R.J., Krogh, F.T.: A quadratic-tensor model algorithm for nonlinear least-squares problems with linear constraints. ACM Trans. Math. Softw. 18, 115–133 (1992)
    • (1992) ACM Trans. Math. Softw. , vol.18 , pp. 115-133
    • Hanson, R.J.1    Krogh, F.T.2
  • 17
    • 84924222053 scopus 로고    scopus 로고
    • Algebraic rules for quadratic regularization of Newton’s method. Comput. Optim
    • Karas, E.W., Santos, S.A., Svaiter, B.F.: Algebraic rules for quadratic regularization of Newton’s method. Comput. Optim. Appl. (2014). doi:10.1007/s10589-014-9671-y
    • (2014) Appl
    • Karas, E.W.1    Santos, S.A.2    Svaiter, B.F.3
  • 19
    • 84862021931 scopus 로고    scopus 로고
    • A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization
    • Lu, S., Wei, Z., Li, L.: A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization. Comput. Optim. Appl. 51, 551–573 (2012)
    • (2012) Comput. Optim. Appl. , vol.51 , pp. 551-573
    • Lu, S.1    Wei, Z.2    Li, L.3
  • 21
    • 69949118458 scopus 로고    scopus 로고
    • Packmol: a package for building initial configurations for molecular dynamics simulations
    • Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009)
    • (2009) J. Comput. Chem. , vol.30 , pp. 2157-2164
    • Martínez, L.1    Andrade, R.2    Birgin, E.G.3    Martínez, J.M.4
  • 23
    • 33646730150 scopus 로고    scopus 로고
    • Cubic regularization of Newton’s method and its global performance
    • Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton’s method and its global performance. Math. Program. 108(1), 177–205 (2006)
    • (2006) Math. Program. , vol.108 , Issue.1 , pp. 177-205
    • Nesterov, Y.1    Polyak, B.T.2
  • 24
    • 34547474583 scopus 로고    scopus 로고
    • Accelerating the cubic regularization of Newton’s method on convex problems
    • Nesterov, Y.: Accelerating the cubic regularization of Newton’s method on convex problems. Math. Program. Ser. B 112, 159–181 (2008)
    • (2008) Math. Program. Ser. B , vol.112 , pp. 159-181
    • Nesterov, Y.1
  • 26
    • 0001040509 scopus 로고
    • Tensor methods for unconstrained optimization using second derivatives
    • Schnabel, R.B., Chow, T.-T.: Tensor methods for unconstrained optimization using second derivatives. SIAM J. Opt. 1, 293–315 (1991)
    • (1991) SIAM J. Opt. , vol.1 , pp. 293-315
    • Schnabel, R.B.1    Chow, T.-T.2
  • 27
    • 0021510543 scopus 로고
    • Tensor methods for nonlinear equations
    • Schnabel, R.B., Frank, P.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21, 815–843 (1984)
    • (1984) SIAM J. Numer. Anal. , vol.21 , pp. 815-843
    • Schnabel, R.B.1    Frank, P.2
  • 28
    • 33748852443 scopus 로고    scopus 로고
    • A subspace implementation of quasi-Newton trust region methods for unconstrained optimization
    • Wang, Z.-H., Yuan, Y.-X.: A subspace implementation of quasi-Newton trust region methods for unconstrained optimization. Numer. Math. 104, 241–269 (2006)
    • (2006) Numer. Math. , vol.104 , pp. 241-269
    • Wang, Z.-H.1    Yuan, Y.-X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.