메뉴 건너뛰기




Volumn 219, Issue 12, 2013, Pages 7012-7022

Stability regions for linear fractional differential systems and their discretizations

Author keywords

Asymptotic stability; Fractional difference system; Fractional differential system; Laplace transform

Indexed keywords

ASYMPTOTICS; BACKWARD DIFFERENCE; DERIVATIVE OPERATORS; DIFFERENCE SYSTEMS; DISCRETIZATIONS; FRACTIONAL DIFFERENTIAL; PROOF TOOLS; QUALITATIVE PROPERTIES; STABILITY PROPERTIES; STABILITY REGIONS;

EID: 84874100688     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.12.019     Document Type: Article
Times cited : (50)

References (28)
  • 1
    • 84971113538 scopus 로고
    • Certain fractional q-integrals and q-derivatives
    • R.P. Agarwal Certain fractional q-integrals and q-derivatives Proc. Camb. Philos. Soc. 66 1969 365 370
    • (1969) Proc. Camb. Philos. Soc. , vol.66 , pp. 365-370
    • Agarwal, R.P.1
  • 2
    • 84974177889 scopus 로고
    • Some fractional q-integrals and q-derivatives
    • W.A. Al-Salam Some fractional q-integrals and q-derivatives Proc. Edin. Math. Soc. 15 1966 135 140
    • (1966) Proc. Edin. Math. Soc. , vol.15 , pp. 135-140
    • Al-Salam, W.A.1
  • 3
    • 46649104814 scopus 로고    scopus 로고
    • On exact convergence rates for solutions of linear systems of Volterra difference equations
    • J.A.D. Appleby, I. Gyri, and D.W. Reynolds On exact convergence rates for solutions of linear systems of Volterra difference equations J. Differ. Equ. Appl. 12 12 2006 1257 1275
    • (2006) J. Differ. Equ. Appl. , vol.12 , Issue.12 , pp. 1257-1275
    • Appleby, J.A.D.1    Gyri, I.2    Reynolds, D.W.3
  • 4
    • 77950548183 scopus 로고    scopus 로고
    • A transform method in discrete fractional calculus
    • F.M. Atici, and P.W. Eloe A transform method in discrete fractional calculus Int. J. Differ. Equ. 2 2007 165 176
    • (2007) Int. J. Differ. Equ. , vol.2 , pp. 165-176
    • Atici, F.M.1    Eloe, P.W.2
  • 5
    • 85085399420 scopus 로고    scopus 로고
    • Discrete fractional calculus with the nabla operator
    • Spec. Ed.
    • F.M. Atici, and P.W. Eloe Discrete fractional calculus with the nabla operator Electron. J. Qual. Theory Differ. Equ. 3 2009 1 12 Spec. Ed.
    • (2009) Electron. J. Qual. Theory Differ. Equ. , vol.3 , pp. 1-12
    • Atici, F.M.1    Eloe, P.W.2
  • 6
    • 79958719410 scopus 로고    scopus 로고
    • Linear systems of fractional nabla difference equations
    • F.M. Atici, and P.W. Eloe Linear systems of fractional nabla difference equations Rocky Mountain J. Math. 41 2 2011 353 370
    • (2011) Rocky Mountain J. Math. , vol.41 , Issue.2 , pp. 353-370
    • Atici, F.M.1    Eloe, P.W.2
  • 8
    • 73449141408 scopus 로고    scopus 로고
    • The h-Laplace and q-Laplace transforms
    • M. Bohner, and G.Sh. Guseinov The h-Laplace and q-Laplace transforms J. Math. Anal. Appl. 365 2010 75 92
    • (2010) J. Math. Anal. Appl. , vol.365 , pp. 75-92
    • Bohner, M.1    Guseinov, G.Sh.2
  • 9
    • 80052649257 scopus 로고    scopus 로고
    • Discrete Mittag-Leffler functions in linear fractional difference equations
    • 21 p., Article ID 565067
    • J. Čermák, T. Kisela, and L. Nechvátal Discrete Mittag-Leffler functions in linear fractional difference equations Abstr. Appl. Anal. 2011 2011 21 p., Article ID 565067
    • (2011) Abstr. Appl. Anal. , vol.2011
    • Čermák, J.1    Kisela, T.2    Nechvátal, L.3
  • 10
    • 84871311338 scopus 로고    scopus 로고
    • Stability and asymptotic properties of a linear fractional difference equation
    • 10.1186/1687-1847-2012-122 16 p.
    • J. Čermák, T. Kisela, and L. Nechvátal Stability and asymptotic properties of a linear fractional difference equation Adv. Differ. Equ. 122 2012 10.1186/1687-1847-2012-122 16 p.
    • (2012) Adv. Differ. Equ. , vol.122
    • Čermák, J.1    Kisela, T.2    Nechvátal, L.3
  • 11
    • 79551655152 scopus 로고    scopus 로고
    • On (q, h) -analogue of fractional calculus
    • J. Čermák, and L. Nechvátal On (q, h) -analogue of fractional calculus J. Nonlinear Math. Phys. 17 1 2010 51 68
    • (2010) J. Nonlinear Math. Phys. , vol.17 , Issue.1 , pp. 51-68
    • Čermák, J.1    Nechvátal, L.2
  • 13
    • 84860452209 scopus 로고    scopus 로고
    • On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence
    • J. Diblík, and E. Schmeidel On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence Appl. Math. Comput. 218 18 2012 9310 9320
    • (2012) Appl. Math. Comput. , vol.218 , Issue.18 , pp. 9310-9320
    • Diblík, J.1    Schmeidel, E.2
  • 14
    • 40849147456 scopus 로고    scopus 로고
    • On hypergeometric functions and k-Pochhammer symbol
    • R. Díaz, and E. Pariguan On hypergeometric functions and k-Pochhammer symbol Divulg. Mat. 15 2 2007 179 192
    • (2007) Divulg. Mat. , vol.15 , Issue.2 , pp. 179-192
    • Díaz, R.1    Pariguan, E.2
  • 15
    • 33751534763 scopus 로고    scopus 로고
    • On multistep methods for differential equations of fractional order
    • L. Galeone, and R. Garrappa On multistep methods for differential equations of fractional order Mediterr. J. Math. 3 2006 565 580
    • (2006) Mediterr. J. Math. , vol.3 , pp. 565-580
    • Galeone, L.1    Garrappa, R.2
  • 18
    • 84966227123 scopus 로고
    • Fractional linear multistep methods for Abel-Volterra integral equations of the second kind
    • C. Lubich Fractional linear multistep methods for Abel-Volterra integral equations of the second kind Math. Comput. 45 1985 463 469
    • (1985) Math. Comput. , vol.45 , pp. 463-469
    • Lubich, C.1
  • 19
    • 0041938913 scopus 로고
    • A stability analysis of convolution quadratures for Abel-Volterra integral equations
    • C. Lubich A stability analysis of convolution quadratures for Abel-Volterra integral equations IMA J. Numer. Anal. 6 1986 87 101
    • (1986) IMA J. Numer. Anal. , vol.6 , pp. 87-101
    • Lubich, C.1
  • 21
    • 79958751873 scopus 로고    scopus 로고
    • Discrete Mittag-Leffler function and its applications
    • A. Nagai Discrete Mittag-Leffler function and its applications Publ. Res. Inst. Math. Sci. Kyoto Univ. 1302 2003 1 20
    • (2003) Publ. Res. Inst. Math. Sci. Kyoto Univ. , vol.1302 , pp. 1-20
    • Nagai, A.1
  • 22
    • 77955429536 scopus 로고    scopus 로고
    • Maximum principles for fractional differential equations derived from Mittag-Leffler functions
    • J.J. Nieto Maximum principles for fractional differential equations derived from Mittag-Leffler functions Appl. Math. Lett. 23 2010 1248 1251
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1248-1251
    • Nieto, J.J.1
  • 24
    • 77953359279 scopus 로고    scopus 로고
    • A note on property of the Mittag-Leffler function
    • J. Peng, and K. Li A note on property of the Mittag-Leffler function J. Math. Anal. Appl. 370 2010 635 638
    • (2010) J. Math. Anal. Appl. , vol.370 , pp. 635-638
    • Peng, J.1    Li, K.2
  • 26
    • 77954177563 scopus 로고    scopus 로고
    • Stability analysis of fractional differential system with Riemann-Liouville derivative
    • D. Qian, Ch. Li, R.P. Agarwal, and P.J.Y. Wong Stability analysis of fractional differential system with Riemann-Liouville derivative Math. Comput. Model. 52 5-6 2010 862 874
    • (2010) Math. Comput. Model. , vol.52 , Issue.56 , pp. 862-874
    • Qian, D.1    Li, Ch.2    Agarwal, R.P.3    Wong, P.J.Y.4
  • 28
    • 21244457230 scopus 로고    scopus 로고
    • Fractional generalization of gradient and Hamiltonian systems
    • V.E. Tarasov Fractional generalization of gradient and Hamiltonian systems J. Phys. A.: Math. Gen. 38 2005 5929 5943
    • (2005) J. Phys. A.: Math. Gen. , vol.38 , pp. 5929-5943
    • Tarasov, V.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.