메뉴 건너뛰기




Volumn 9, Issue , 2016, Pages 13-16

Data on Support Vector Machines (SVM) model to forecast photovoltaic power

Author keywords

Forecast photovoltaic; Least Squares Support Vector Machines (LS SVM)

Indexed keywords

FORECASTING; SUPPORT VECTOR MACHINES;

EID: 84989882746     PISSN: None     EISSN: 23523409     Source Type: Journal    
DOI: 10.1016/j.dib.2016.08.024     Document Type: DP
Times cited : (50)

References (8)
  • 1
    • 84991396324 scopus 로고    scopus 로고
    • Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data
    • http://www.sciencedirect.com/science/article/pii/S0925231216305677
    • M. Malvoni, M.G. De Giorgi, P.M. Congedo, Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data, Spec. Issue Recent Adv. Support Vector Mach. (2015), http://dx.doi.org/10.1016/j.neucom.2016.01.104, 〈 http://www.sciencedirect.com/science/article/pii/S0925231216305677〉.
    • (2015) Spec. Issue Recent Adv. Support Vector Mach.
    • Malvoni, M.1    De Giorgi, M.G.2    Congedo, P.M.3
  • 2
    • 84929783048 scopus 로고    scopus 로고
    • An integrated tool to monitor renewable energy flows and optimize the recharge of a fleet of plug-in electric vehicles in the campus of the University of Salento: Preliminary results
    • T. Donateo, P.M. Congedo, M. Malvoni, F. Ingrosso, D. Laforgia, F. Ciancarelli, An integrated tool to monitor renewable energy flows and optimize the recharge of a fleet of plug-in electric vehicles in the campus of the University of Salento: Preliminary results, in: The IFAC Proceedings Volumes (IFAC-PapersOnline), 19, 2014, pp. 7861–7866. 〈doi:10.3182/20140824-6-ZA-1003.01184〉.
    • (2014) The IFAC Proceedings Volumes (IFAC-PapersOnline) , vol.19 , pp. 7861-7866
    • Donateo, T.1    Congedo, P.M.2    Malvoni, M.3    Ingrosso, F.4    Laforgia, D.5    Ciancarelli, F.6
  • 3
    • 84873315894 scopus 로고    scopus 로고
    • Performance measurements of monocrystalline silicon PV modules in South-eastern Italy
    • Congedo, P.M., Malvoni, M., Mele, M., De Giorgi, M.G., Performance measurements of monocrystalline silicon PV modules in South-eastern Italy. Energy Convers. Manag. 68 (2013), 1–10, 10.1016/j.enconman.2012.12.017.
    • (2013) Energy Convers. Manag. , vol.68 , pp. 1-10
    • Congedo, P.M.1    Malvoni, M.2    Mele, M.3    De Giorgi, M.G.4
  • 4
    • 84901231602 scopus 로고    scopus 로고
    • Photovoltaic power forecasting using statistical methods: Impact of weather data
    • De Giorgi, M.G., Congedo, P.M., Malvoni, M., Photovoltaic power forecasting using statistical methods: Impact of weather data. Sci., Meas. Technol. 8:3 (2014), 90–97, 10.1049/4-smt.2013.0135.
    • (2014) Sci., Meas. Technol. , vol.8 , Issue.3 , pp. 90-97
    • De Giorgi, M.G.1    Congedo, P.M.2    Malvoni, M.3
  • 6
    • 84966440542 scopus 로고    scopus 로고
    • Data on photovoltaic power forecasting models for Mediterranean climate
    • Malvoni, M., De Giorgi, M.G., Congedo, P.M., Data on photovoltaic power forecasting models for Mediterranean climate. Data Brief. 7 (2016), 1639–1642, 10.1016/j.dib.2016.04.063.
    • (2016) Data Brief. , vol.7 , pp. 1639-1642
    • Malvoni, M.1    De Giorgi, M.G.2    Congedo, P.M.3
  • 7
    • 84929332562 scopus 로고    scopus 로고
    • Error analysis of hybrid photovoltaic power forecasting models: a case study of Mediterranean climate
    • De Giorgi, M.G., Congedo, P.M., Malvoni, M., Laforgia, D., Error analysis of hybrid photovoltaic power forecasting models: a case study of Mediterranean climate. Energy Convers. Manag. 100 (2015), 117–130.
    • (2015) Energy Convers. Manag. , vol.100 , pp. 117-130
    • De Giorgi, M.G.1    Congedo, P.M.2    Malvoni, M.3    Laforgia, D.4
  • 8
    • 84973100859 scopus 로고    scopus 로고
    • Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine
    • De Giorgi, M.G., Malvoni, M., Congedo, P.M., Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine. Energy 107 (2016), 360–373, 10.1016/j.energy.2016.04.020.
    • (2016) Energy , vol.107 , pp. 360-373
    • De Giorgi, M.G.1    Malvoni, M.2    Congedo, P.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.