메뉴 건너뛰기




Volumn 127, Issue , 2016, Pages 149-159

Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs

Author keywords

Compressed CO2 energy storage system; Parametric analysis; Subsurface energy storage; Thermodynamic analysis; Two saline aquifers reservoirs; Utilization of CO2

Indexed keywords

AQUIFERS; CARBON; CARBON DIOXIDE; COMPRESSED AIR; COMPRESSED AIR ENERGY STORAGE; ENERGY STORAGE; HYDROGEOLOGY; THERMOANALYSIS; THERMODYNAMIC PROPERTIES; THERMODYNAMICS;

EID: 84989854166     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2016.08.096     Document Type: Article
Times cited : (163)

References (43)
  • 1
    • 62649092445 scopus 로고    scopus 로고
    • The role of compressed air energy storage (CAES) in future sustainable energy systems
    • [1] Lund, H., Salgi, G., The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers Manage 50:5 (2009), 1172–1179.
    • (2009) Energy Convers Manage , vol.50 , Issue.5 , pp. 1172-1179
    • Lund, H.1    Salgi, G.2
  • 2
    • 84989849933 scopus 로고    scopus 로고
    • A comparative research of two adiabatic compressed air energy storage systems
    • [2] Liu, J.L., Wang, J.H., A comparative research of two adiabatic compressed air energy storage systems. Energy Convers Manage 108 (2016), 566–578.
    • (2016) Energy Convers Manage , vol.108 , pp. 566-578
    • Liu, J.L.1    Wang, J.H.2
  • 6
    • 84936985368 scopus 로고    scopus 로고
    • Thermoeconomic analysis of a Compressed Air Energy Storage (CAES) system integrated with a wind power plant in the framework of the IPEX Market
    • [6] De Bosio, F., Verda, V., Thermoeconomic analysis of a Compressed Air Energy Storage (CAES) system integrated with a wind power plant in the framework of the IPEX Market. Appl Energy 152 (2015), 173–182.
    • (2015) Appl Energy , vol.152 , pp. 173-182
    • De Bosio, F.1    Verda, V.2
  • 7
    • 85027930423 scopus 로고    scopus 로고
    • Assessing the economic benefits of compressed air energy storage for mitigating wind curtailment
    • [7] Cleary, B., Duffy, A., O'connor, A., Conlon, M., Fthenakis, V., Assessing the economic benefits of compressed air energy storage for mitigating wind curtailment. IEEE Trans Sustain Energy 6:3 (2015), 1021–1028.
    • (2015) IEEE Trans Sustain Energy , vol.6 , Issue.3 , pp. 1021-1028
    • Cleary, B.1    Duffy, A.2    O'connor, A.3    Conlon, M.4    Fthenakis, V.5
  • 8
    • 84961112907 scopus 로고    scopus 로고
    • Operation analysis of a photovoltaic plant integrated with a compressed air energy storage system and a city gate station
    • [8] Arabkoohsar, A., Machado, L., Koury, R.N.N., Operation analysis of a photovoltaic plant integrated with a compressed air energy storage system and a city gate station. Energy 98 (2016), 78–91.
    • (2016) Energy , vol.98 , pp. 78-91
    • Arabkoohsar, A.1    Machado, L.2    Koury, R.N.N.3
  • 9
    • 84930871899 scopus 로고    scopus 로고
    • The first and second law analysis of a grid connected photovoltaic plant equipped with a compressed air energy storage unit
    • [9] Arabkoohsar, A., Machado, L., Farzaneh-Gord, M., Koury, R.N.N., The first and second law analysis of a grid connected photovoltaic plant equipped with a compressed air energy storage unit. Energy 87 (2015), 520–539.
    • (2015) Energy , vol.87 , pp. 520-539
    • Arabkoohsar, A.1    Machado, L.2    Farzaneh-Gord, M.3    Koury, R.N.N.4
  • 10
    • 84990032971 scopus 로고    scopus 로고
    • Long-term energy storage with compressed air storages.
    • [10] Long-term energy storage with compressed air storages. < http://ees-magazine.com/long-term-energy-storage-with-compressed-air-storages/>.
  • 11
    • 84874390240 scopus 로고    scopus 로고
    • Porous media compressed-air energy storage (PM-CAES): theory and simulation of the coupled wellbore-reservoir system
    • [11] Oldenburg, C.M., Pan, L., Porous media compressed-air energy storage (PM-CAES): theory and simulation of the coupled wellbore-reservoir system. Transport Porous Med 97:2 (2013), 201–221.
    • (2013) Transport Porous Med , vol.97 , Issue.2 , pp. 201-221
    • Oldenburg, C.M.1    Pan, L.2
  • 12
    • 84874678637 scopus 로고    scopus 로고
    • Exergy and exergoeconomic model of a ground-based CAES plant for peak-load energy production
    • [12] Buffa, F., Kemble, S., Manfrida, G., Milazzo, A., Exergy and exergoeconomic model of a ground-based CAES plant for peak-load energy production. Energies 6:2 (2013), 1050–1067.
    • (2013) Energies , vol.6 , Issue.2 , pp. 1050-1067
    • Buffa, F.1    Kemble, S.2    Manfrida, G.3    Milazzo, A.4
  • 13
    • 84868488382 scopus 로고    scopus 로고
    • Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage
    • [13] Proczka, J.J., Muralidharan, K., Villela, D., Simmons, J.H., Frantziskonis, G., Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage. Energy Convers Manage 65 (2013), 597–605.
    • (2013) Energy Convers Manage , vol.65 , pp. 597-605
    • Proczka, J.J.1    Muralidharan, K.2    Villela, D.3    Simmons, J.H.4    Frantziskonis, G.5
  • 14
    • 84864108156 scopus 로고    scopus 로고
    • The thermodynamic effect of thermal energy storage on compressed air energy storage system
    • [14] Zhang, Y., Yang, K., Li, X., Xu, J., The thermodynamic effect of thermal energy storage on compressed air energy storage system. Renew Energy 50 (2013), 227–235.
    • (2013) Renew Energy , vol.50 , pp. 227-235
    • Zhang, Y.1    Yang, K.2    Li, X.3    Xu, J.4
  • 15
    • 84875246705 scopus 로고    scopus 로고
    • The thermodynamic effect of air storage chamber model on advanced adiabatic compressed air energy storage system
    • [15] Zhang, Y., Yang, K., Li, X., Xu, J., The thermodynamic effect of air storage chamber model on advanced adiabatic compressed air energy storage system. Renew Energy 57 (2013), 469–478.
    • (2013) Renew Energy , vol.57 , pp. 469-478
    • Zhang, Y.1    Yang, K.2    Li, X.3    Xu, J.4
  • 16
    • 84860793159 scopus 로고    scopus 로고
    • Green solution for power generation by adoption of adiabatic CAES system
    • [16] Jubeh, N.M., Najjar, Y.S.H., Green solution for power generation by adoption of adiabatic CAES system. Energy Convers Manage 44 (2012), 85–89.
    • (2012) Energy Convers Manage , vol.44 , pp. 85-89
    • Jubeh, N.M.1    Najjar, Y.S.H.2
  • 17
    • 0032186929 scopus 로고    scopus 로고
    • Performance analysis of compressed air energy storage (CAES) plant for dry regions
    • [17] Najjar, Y.S.H., Zaamout, M.S., Performance analysis of compressed air energy storage (CAES) plant for dry regions. Energy Convers Manage 39:15 (1998), 1503–1511.
    • (1998) Energy Convers Manage , vol.39 , Issue.15 , pp. 1503-1511
    • Najjar, Y.S.H.1    Zaamout, M.S.2
  • 18
    • 84990042281 scopus 로고    scopus 로고
    • Huntorf CAES: More than 20 years of successful operation, Orlando, Florida, USA;.
    • [18] Crotogino F, Mohmeyer K U, Scharf R. Huntorf CAES: More than 20 years of successful operation, Orlando, Florida, USA; 2001.
    • (2001)
    • Crotogino, F.1    Mohmeyer, K.U.2    Scharf, R.3
  • 19
    • 84888139865 scopus 로고    scopus 로고
    • Compressed air energy storage with waste heat export: an Alberta case study
    • [19] Safaei, H., Keith, D.W., Compressed air energy storage with waste heat export: an Alberta case study. Energy Convers Manage 78 (2014), 114–124.
    • (2014) Energy Convers Manage , vol.78 , pp. 114-124
    • Safaei, H.1    Keith, D.W.2
  • 20
    • 84946045920 scopus 로고    scopus 로고
    • Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage
    • [20] Luo, X., Wang, J., Krupke, C., Wang, Y., Sheng, Y., Li, J., et al. Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage. Appl Energy 162 (2016), 589–600.
    • (2016) Appl Energy , vol.162 , pp. 589-600
    • Luo, X.1    Wang, J.2    Krupke, C.3    Wang, Y.4    Sheng, Y.5    Li, J.6
  • 21
    • 84947071890 scopus 로고    scopus 로고
    • Performance optimization of adiabatic compressed air energy storage with ejector technology
    • [21] Guo, Z., Deng, G., Fan, Y., Chen, G., Performance optimization of adiabatic compressed air energy storage with ejector technology. Appl Therm Eng 94 (2016), 193–197.
    • (2016) Appl Therm Eng , vol.94 , pp. 193-197
    • Guo, Z.1    Deng, G.2    Fan, Y.3    Chen, G.4
  • 22
    • 84864812233 scopus 로고    scopus 로고
    • A trigeneration system based on compressed air and thermal energy storage
    • [22] Li, Y., Wang, X., Li, D., Ding, Y., A trigeneration system based on compressed air and thermal energy storage. Appl Energy 99 (2012), 316–323.
    • (2012) Appl Energy , vol.99 , pp. 316-323
    • Li, Y.1    Wang, X.2    Li, D.3    Ding, Y.4
  • 23
    • 80053461215 scopus 로고    scopus 로고
    • Dynamic simulation of an innovative compressed air energy storage plant-detailed modelling of the storage cavern
    • [23] Nielsen, L., Leithner, R., Dynamic simulation of an innovative compressed air energy storage plant-detailed modelling of the storage cavern. WSEAS Trans Power Sys 4:8 (2009), 253–263.
    • (2009) WSEAS Trans Power Sys , vol.4 , Issue.8 , pp. 253-263
    • Nielsen, L.1    Leithner, R.2
  • 24
    • 84964026661 scopus 로고    scopus 로고
    • Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage
    • [24] Yao, E., Wang, H., Wang, L., Xi, G., Marechal, F., Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage. Energy Convers Manage 118 (2016), 377–386.
    • (2016) Energy Convers Manage , vol.118 , pp. 377-386
    • Yao, E.1    Wang, H.2    Wang, L.3    Xi, G.4    Marechal, F.5
  • 25
    • 84962778081 scopus 로고    scopus 로고
    • Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials
    • [25] Tessier, M.J., Floros, M.C., Bouzidi, L., Narine, S.S., Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials. Energy 106 (2016), 528–534.
    • (2016) Energy , vol.106 , pp. 528-534
    • Tessier, M.J.1    Floros, M.C.2    Bouzidi, L.3    Narine, S.S.4
  • 27
    • 84960954216 scopus 로고    scopus 로고
    • Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas
    • [27] Li, Y., Sciacovelli, A., Peng, X., Radcliffe, J., Ding, Y., Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas. Appl Energy 171 (2016), 26–36.
    • (2016) Appl Energy , vol.171 , pp. 26-36
    • Li, Y.1    Sciacovelli, A.2    Peng, X.3    Radcliffe, J.4    Ding, Y.5
  • 28
    • 84979306611 scopus 로고    scopus 로고
    • Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid
    • [28] Zhang, Y., Yang, K., Hong, H., Zhong, X., Xu, J., Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid. Renew Energy 99 (2016), 682–697.
    • (2016) Renew Energy , vol.99 , pp. 682-697
    • Zhang, Y.1    Yang, K.2    Hong, H.3    Zhong, X.4    Xu, J.5
  • 29
    • 63749132596 scopus 로고    scopus 로고
    • Progress in electrical energy storage system: a critical review
    • [29] Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., Ding, Y., Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:3 (2009), 291–312.
    • (2009) Prog Nat Sci , vol.19 , Issue.3 , pp. 291-312
    • Chen, H.1    Cong, T.N.2    Yang, W.3    Tan, C.4    Li, Y.5    Ding, Y.6
  • 30
    • 80053436906 scopus 로고    scopus 로고
    • Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis
    • [30] Kim, Y.M., Shin, D.G., Favrat, D., Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis. Energy 36:10 (2011), 6220–6233.
    • (2011) Energy , vol.36 , Issue.10 , pp. 6220-6233
    • Kim, Y.M.1    Shin, D.G.2    Favrat, D.3
  • 31
    • 84959366696 scopus 로고    scopus 로고
    • Thermodynamic characteristics of a novel supercritical compressed air energy storage system
    • [31] Guo, H., Xu, Y., Chen, H., Zhou, X., Thermodynamic characteristics of a novel supercritical compressed air energy storage system. Energy Convers Manage 115 (2016), 167–177.
    • (2016) Energy Convers Manage , vol.115 , pp. 167-177
    • Guo, H.1    Xu, Y.2    Chen, H.3    Zhou, X.4
  • 32
    • 84896405895 scopus 로고    scopus 로고
    • Design and testing of energy bags for underwater compressed air energy storage
    • [32] Pimm, A.J., Garvey, S.D., de Jong, M., Design and testing of energy bags for underwater compressed air energy storage. Energy 66 (2014), 496–508.
    • (2014) Energy , vol.66 , pp. 496-508
    • Pimm, A.J.1    Garvey, S.D.2    de Jong, M.3
  • 33
    • 84920741467 scopus 로고    scopus 로고
    • A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: a sizing-design methodology
    • [33] Jannelli, E., Minutillo, M., Lavadera, A.L., Falcucci, G., A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: a sizing-design methodology. Energy 78 (2014), 313–322.
    • (2014) Energy , vol.78 , pp. 313-322
    • Jannelli, E.1    Minutillo, M.2    Lavadera, A.L.3    Falcucci, G.4
  • 34
    • 84990029840 scopus 로고    scopus 로고
    • A supercritical carbon dioxide cycle for next generation nuclear reactors. PhD dissertation, Massachusetts Institute of Technology. These N MIT-ANP-TR-100;.
    • [34] Dostal V. A supercritical carbon dioxide cycle for next generation nuclear reactors. PhD dissertation, Massachusetts Institute of Technology. These N MIT-ANP-TR-100; 2004.
    • (2004)
    • Dostal, V.1
  • 35
    • 84942095941 scopus 로고    scopus 로고
    • Performance analysis of a novel energy storage system based on liquid carbon dioxide
    • [35] Wang, M., Zhao, P., Wu, Y., Dai, Y., Performance analysis of a novel energy storage system based on liquid carbon dioxide. Appl Therm Eng 91 (2015), 812–823.
    • (2015) Appl Therm Eng , vol.91 , pp. 812-823
    • Wang, M.1    Zhao, P.2    Wu, Y.3    Dai, Y.4
  • 37
    • 61849130187 scopus 로고    scopus 로고
    • Analysis of a carbon dioxide transcritical power cycle using a low temperature source
    • [37] Cayer, E., Galanis, N., Desilets, M., Nesreddine, H., Roy, P., Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Appl Energy 86:7 (2009), 1055–1063.
    • (2009) Appl Energy , vol.86 , Issue.7 , pp. 1055-1063
    • Cayer, E.1    Galanis, N.2    Desilets, M.3    Nesreddine, H.4    Roy, P.5
  • 38
    • 58249091161 scopus 로고    scopus 로고
    • Compressed air energy storage: theory, resources, and applications for wind power. Report no. 8
    • Princeton environmental institute
    • [38] Succar, Samir, Williams, Robert H., Compressed air energy storage: theory, resources, and applications for wind power. Report no. 8. 2008, Princeton environmental institute.
    • (2008)
    • Succar1    Samir2    Williams, R.H.3
  • 39
    • 84867634595 scopus 로고    scopus 로고
    • Potential and evolution of compressed air energy storage: energy and exergy analyses
    • [39] Kim, Y.M., Lee, J.H., Kim, S.J., Favrat, D., Potential and evolution of compressed air energy storage: energy and exergy analyses. Entropy 14:8 (2012), 1501–1521.
    • (2012) Entropy , vol.14 , Issue.8 , pp. 1501-1521
    • Kim, Y.M.1    Lee, J.H.2    Kim, S.J.3    Favrat, D.4
  • 40
    • 84968747366 scopus 로고    scopus 로고
    • Thermodynamic analysis of a compressed air energy storage system through advanced exergetic analysis
    • [40] Liu, H., He, Q., Saeed, S.B., Thermodynamic analysis of a compressed air energy storage system through advanced exergetic analysis. J Renew Sustain Energy, 8(3), 2016, 034101.
    • (2016) J Renew Sustain Energy , vol.8 , Issue.3 , pp. 034101
    • Liu, H.1    He, Q.2    Saeed, S.B.3
  • 41
    • 84864002587 scopus 로고    scopus 로고
    • Advanced thermodynamic analysis and evaluation of a supercritical power plant
    • [41] Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G., Advanced thermodynamic analysis and evaluation of a supercritical power plant. Energies 5:6 (2012), 1850–1863.
    • (2012) Energies , vol.5 , Issue.6 , pp. 1850-1863
    • Wang, L.1    Yang, Y.2    Morosuk, T.3    Tsatsaronis, G.4
  • 42
    • 84990040169 scopus 로고    scopus 로고
    • Welcome to CoolProp.
    • [42] Welcome to CoolProp. < http://www.coolprop.org/>.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.