-
1
-
-
84921963960
-
Operational optimization and demand response of hybrid renewable energy systems
-
[1] Wang, X., Palazoglu, A., El-Farra, N.H., Operational optimization and demand response of hybrid renewable energy systems. Appl. Energy 143 (2015), 324–335.
-
(2015)
Appl. Energy
, vol.143
, pp. 324-335
-
-
Wang, X.1
Palazoglu, A.2
El-Farra, N.H.3
-
2
-
-
84867237495
-
Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)
-
[2] Abbaspour, M., Satkin, M., Mohammadi-Ivatloo, B., Lotfi, F.H., Noorollahi, Y., Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES). Renew. Energy 51 (2013), 53–59.
-
(2013)
Renew. Energy
, vol.51
, pp. 53-59
-
-
Abbaspour, M.1
Satkin, M.2
Mohammadi-Ivatloo, B.3
Lotfi, F.H.4
Noorollahi, Y.5
-
3
-
-
78650325161
-
Overview of the energy storage systems for wind power integration enhancement
-
[3] Swierczynski, M., Teodorescu, R., Rasmussen, C.N., Rodriguez, P., Vikelgaard, H., Overview of the energy storage systems for wind power integration enhancement. Industrial Electronics (ISIE), 2010 IEEE International Symposium on, Bari, Italy, 2010.
-
(2010)
Industrial Electronics (ISIE), 2010 IEEE International Symposium on, Bari, Italy
-
-
Swierczynski, M.1
Teodorescu, R.2
Rasmussen, C.N.3
Rodriguez, P.4
Vikelgaard, H.5
-
4
-
-
84907484525
-
A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns
-
[4] Xia, C., Zhou, Y., Zhou, S., Zhang, P., Wang, F., A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns. Renew. Energy 74 (2015), 718–726.
-
(2015)
Renew. Energy
, vol.74
, pp. 718-726
-
-
Xia, C.1
Zhou, Y.2
Zhou, S.3
Zhang, P.4
Wang, F.5
-
5
-
-
84938811858
-
Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines
-
[5] Zhao, P., Gao, L., Wang, J.F., Dai, Y.P., Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines. Renew. Energy 85 (2016), 1164–1177.
-
(2016)
Renew. Energy
, vol.85
, pp. 1164-1177
-
-
Zhao, P.1
Gao, L.2
Wang, J.F.3
Dai, Y.P.4
-
6
-
-
84929583266
-
Thermo-economic analysis and sizing of a PV plant equipped with a compressed air energy storage system
-
[6] Arabkoohsar, A., Machado, L., Farzaneh-Gord, M., Koury, R.N.N., Thermo-economic analysis and sizing of a PV plant equipped with a compressed air energy storage system. Renew. Energy 83 (2015), 491–509.
-
(2015)
Renew. Energy
, vol.83
, pp. 491-509
-
-
Arabkoohsar, A.1
Machado, L.2
Farzaneh-Gord, M.3
Koury, R.N.N.4
-
7
-
-
74649085009
-
A thermal energy storage process for large scale electric applications
-
[7] Desrues, T., Ruer, J., Marty, P., Fourmigué, J.F., A thermal energy storage process for large scale electric applications. Appl. Therm. Eng. 30 (2010), 425–432.
-
(2010)
Appl. Therm. Eng.
, vol.30
, pp. 425-432
-
-
Desrues, T.1
Ruer, J.2
Marty, P.3
Fourmigué, J.F.4
-
8
-
-
42149111668
-
Thermodynamic analysis of CAES/TES systems for renewable energy plants
-
[8] Grazzini, G., Milazzo, A., Thermodynamic analysis of CAES/TES systems for renewable energy plants. Renew. Energy 33 (2008), 1998–2006.
-
(2008)
Renew. Energy
, vol.33
, pp. 1998-2006
-
-
Grazzini, G.1
Milazzo, A.2
-
9
-
-
34548290249
-
Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES
-
[9] Jakiel, C., Zunft, S., Nowi, A., Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES. Int. J. Energy Technol. Policy 5 (2007), 296–306.
-
(2007)
Int. J. Energy Technol. Policy
, vol.5
, pp. 296-306
-
-
Jakiel, C.1
Zunft, S.2
Nowi, A.3
-
10
-
-
84867779398
-
Lessons from Iowa: development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator
-
[10] Schulte, R.H., Critelli, N., Holst, K., Huff, G., Lessons from Iowa: development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator. 2012.
-
(2012)
-
-
Schulte, R.H.1
Critelli, N.2
Holst, K.3
Huff, G.4
-
11
-
-
63749093915
-
A Method of Storing Energy and a Cryogenic Energy Storage System
-
WO/2007/096656
-
[11] Chen, H., Ding, Y., Peters, T., Berger, F., A Method of Storing Energy and a Cryogenic Energy Storage System. WO/2007/096656, 2007.
-
(2007)
-
-
Chen, H.1
Ding, Y.2
Peters, T.3
Berger, F.4
-
12
-
-
84912128214
-
Liquid air energy storage – analysis and first results from a pilot scale demonstration plant
-
[12] Morgan, R., Nelmes, S., Gibson, E., Brett, G., Liquid air energy storage – analysis and first results from a pilot scale demonstration plant. Appl. Energy 137 (2015), 845–853.
-
(2015)
Appl. Energy
, vol.137
, pp. 845-853
-
-
Morgan, R.1
Nelmes, S.2
Gibson, E.3
Brett, G.4
-
13
-
-
84954513962
-
Thermodynamic analysis of a liquid air energy storage system
-
[13] Guizzi, G.L., Manno, M., Tolomei, L.M., Vitali, R.M., Thermodynamic analysis of a liquid air energy storage system. Energy 93 (2015), 1639–1647.
-
(2015)
Energy
, vol.93
, pp. 1639-1647
-
-
Guizzi, G.L.1
Manno, M.2
Tolomei, L.M.3
Vitali, R.M.4
-
14
-
-
84942095941
-
Performance analysis of a novel energy storage system based on liquid carbon dioxide
-
[14] Wang, M.K., Zhao, P., Wu, Y., Dai, Y.P., Performance analysis of a novel energy storage system based on liquid carbon dioxide. Appl. Therm. Eng. 91 (2015), 812–823.
-
(2015)
Appl. Therm. Eng.
, vol.91
, pp. 812-823
-
-
Wang, M.K.1
Zhao, P.2
Wu, Y.3
Dai, Y.P.4
-
15
-
-
84865435528
-
Thermoelectric Energy Storage System Having Two Thermal Baths and Method for Storing Thermoelectric Energy
-
WO2010118915
-
[15] Hemrle, J., Kaufmann, L., Mercangöz, M., Thermoelectric Energy Storage System Having Two Thermal Baths and Method for Storing Thermoelectric Energy. WO2010118915, 2009.
-
(2009)
-
-
Hemrle, J.1
Kaufmann, L.2
Mercangöz, M.3
-
16
-
-
84888024700
-
A solar energy storage and power generation system based on supercritical carbon dioxide
-
[16] Liu, J., Chen, H., Xu, Y., Wang, L., Tan, C., A solar energy storage and power generation system based on supercritical carbon dioxide. Renew. Energy 64 (2014), 43–51.
-
(2014)
Renew. Energy
, vol.64
, pp. 43-51
-
-
Liu, J.1
Chen, H.2
Xu, Y.3
Wang, L.4
Tan, C.5
-
17
-
-
77957067873
-
A review of thermodynamic cycles and working fluids for the conversion of low-grade heat
-
[17] Chen, H.J., Goswami, D.Y., Stefanakos, E.K., A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sust. Energy Rev. 14 (2010), 3059–3067.
-
(2010)
Renew. Sust. Energy Rev.
, vol.14
, pp. 3059-3067
-
-
Chen, H.J.1
Goswami, D.Y.2
Stefanakos, E.K.3
-
20
-
-
84865419723
-
Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: methodology and base case
-
[20] Morandin, M., Maréchal, F., Mercangöz, M., Buchter, F., Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: methodology and base case. Energy 45 (2012), 375–385.
-
(2012)
Energy
, vol.45
, pp. 375-385
-
-
Morandin, M.1
Maréchal, F.2
Mercangöz, M.3
Buchter, F.4
-
21
-
-
84865410986
-
Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part B: alternative system configurations
-
[21] Morandin, M., Maréchal, F., Mercangöz, M., Buchter, F., Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part B: alternative system configurations. Energy 45 (2012), 386–396.
-
(2012)
Energy
, vol.45
, pp. 386-396
-
-
Morandin, M.1
Maréchal, F.2
Mercangöz, M.3
Buchter, F.4
-
22
-
-
84871717088
-
2 cycles with TES (thermal energy storage) for electricity storage
-
2 cycles with TES (thermal energy storage) for electricity storage. Energy 49 (2013), 484–501.
-
(2013)
Energy
, vol.49
, pp. 484-501
-
-
Kim, Y.M.1
Shin, D.G.2
Lee, S.Y.3
Favrat, D.4
-
24
-
-
84954523363
-
Performance analysis of energy storage system based on liquid carbon dioxide with different configurations
-
[24] Wang, M.K., Zhao, P., Wu, Y., Dai, Y.P., Performance analysis of energy storage system based on liquid carbon dioxide with different configurations. Energy 93 (2015), 1931–1942.
-
(2015)
Energy
, vol.93
, pp. 1931-1942
-
-
Wang, M.K.1
Zhao, P.2
Wu, Y.3
Dai, Y.P.4
-
25
-
-
84881189648
-
Supercritical carbon dioxide brayton power cycle development overview
-
[25] Kimball, K.J., Clementoni, E.M., Supercritical carbon dioxide brayton power cycle development overview. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, 2012.
-
(2012)
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark
-
-
Kimball, K.J.1
Clementoni, E.M.2
-
26
-
-
84989849933
-
A comparative research of two adiabatic compressed air energy storage systems
-
[26] Liu, J.L., Wang, J.H., A comparative research of two adiabatic compressed air energy storage systems. Energy Convers. Manag. 108 (2016), 566–578.
-
(2016)
Energy Convers. Manag.
, vol.108
, pp. 566-578
-
-
Liu, J.L.1
Wang, J.H.2
-
28
-
-
84921680743
-
Experimental study of cryogenic liquid turbine expander with closed-loop liquefied nitrogen system
-
[28] Wang, K., Sun, J., Song, P., Experimental study of cryogenic liquid turbine expander with closed-loop liquefied nitrogen system. Cryogenics 67 (2015), 4–14.
-
(2015)
Cryogenics
, vol.67
, pp. 4-14
-
-
Wang, K.1
Sun, J.2
Song, P.3
-
29
-
-
40349115777
-
Exergy: Energy, Environment and Sustainable Development
-
second ed. Elsevier Science Ltd Oxford, UK
-
[29] Dincer, I., Rosen, M.A., Exergy: Energy, Environment and Sustainable Development. second ed., 2012, Elsevier Science Ltd, Oxford, UK.
-
(2012)
-
-
Dincer, I.1
Rosen, M.A.2
-
30
-
-
84877578835
-
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
-
version 9.0
-
[30] Lemmon, E.W., Huber, M.L., McLinden, M.O., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP. 2010 version 9.0.
-
(2010)
-
-
Lemmon, E.W.1
Huber, M.L.2
McLinden, M.O.3
-
31
-
-
58249091161
-
Compressed Air Energy Storage: Theory, Resources, and Applications for Wind Power
-
Princeton University
-
[31] Succar, S., Williams, R.H., Compressed Air Energy Storage: Theory, Resources, and Applications for Wind Power. 2008, Princeton University.
-
(2008)
-
-
Succar, S.1
Williams, R.H.2
-
32
-
-
84864108156
-
The thermodynamic effect of thermal energy storage on compressed air energy storage system
-
[32] Zhang, Y., Yang, K., Li, X.M., Xu, J.Z., The thermodynamic effect of thermal energy storage on compressed air energy storage system. Renew. Energy 50 (2013), 227–235.
-
(2013)
Renew. Energy
, vol.50
, pp. 227-235
-
-
Zhang, Y.1
Yang, K.2
Li, X.M.3
Xu, J.Z.4
-
33
-
-
84951013214
-
Thermal energy storage in building integrated thermal systems: a review. Part 1. active storage systems
-
[33] Navarro, L., de Gracia, A., Colclough, S., Browne, M., McCormack, S.J., Griffiths, P., Cabeza, L.F., Thermal energy storage in building integrated thermal systems: a review. Part 1. active storage systems. Renew. Energy 88 (2016), 526–547.
-
(2016)
Renew. Energy
, vol.88
, pp. 526-547
-
-
Navarro, L.1
de Gracia, A.2
Colclough, S.3
Browne, M.4
McCormack, S.J.5
Griffiths, P.6
Cabeza, L.F.7
|