메뉴 건너뛰기




Volumn 2, Issue 4, 2009, Pages 786-798

Reducing Compositional to Disquotational Truth

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84989159450     PISSN: 17550203     EISSN: 17550211     Source Type: Journal    
DOI: 10.1017/S1755020309990220     Document Type: Review
Times cited : (25)

References (17)
  • 2
    • 35349016896 scopus 로고    scopus 로고
    • Deflationism, conservativeness and maximality
    • Ciéslínski, C. (2007). Deflationism, conservativeness and maximality. Journal of Philosophical Logic, 36, 695-705.
    • (2007) Journal of Philosophical Logic , vol.36 , pp. 695-705
    • Ciéslínski, C.1
  • 3
    • 0009949303 scopus 로고
    • Reflecting on incompleteness
    • Feferman, S. (1991). Reflecting on incompleteness. Journal of Symbolic Logic, 56, 1-49.
    • (1991) Journal of Symbolic Logic , vol.56 , pp. 1-49
    • Feferman, S.1
  • 4
    • 61149395113 scopus 로고
    • Disquotational truth and factually defective discourse
    • Field, H. (1994). Disquotational truth and factually defective discourse. The Philosophical Review, 103, 405-452.
    • (1994) The Philosophical Review , vol.103 , pp. 405-452
    • Field, H.1
  • 5
    • 0040652908 scopus 로고    scopus 로고
    • Conservative theories of classical truth
    • Halbach, V. (1999a). Conservative theories of classical truth. Studia Logica, 62, 353-370.
    • (1999) Studia Logica , vol.62 , pp. 353-370
    • Halbach, V.1
  • 6
    • 52549122269 scopus 로고    scopus 로고
    • Disquotationalism and infinite conjunctions
    • Halbach, V. (1999b). Disquotationalism and infinite conjunctions. Mind, 108, 1-22.
    • (1999) Mind , vol.108 , pp. 1-22
    • Halbach, V.1
  • 8
    • 84924577467 scopus 로고    scopus 로고
    • (forthcoming Cambridge: Cambridge University Press
    • Halbach, V. (forthcoming). Axiomatic Theories of Truth. Cambridge: Cambridge University Press.
    • Axiomatic Theories of Truth
    • Halbach, V.1
  • 9
    • 84857938207 scopus 로고    scopus 로고
    • Axiomatic theories of truth
    • Spring In Zalta, E. N., editor Stanford, CA: The Metaphysics Research Lab, Center for the Study of Language and Information Stanford University. Available from
    • Halbach, V. (Spring 2006). Axiomatic theories of truth. In Zalta, E. N., editor. Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab, Center for the Study of Language and Information, Stanford University. Available from: http://plato.stanford.edu/archives/spr2006/entries/truth-axiomatic/.
    • (2006) Stanford Encyclopedia of Philosophy
    • Halbach, V.1
  • 10
    • 33745229372 scopus 로고    scopus 로고
    • Axiomatizing Kripke's theory of truth
    • Halbach, V., Horsten, L. (2006). Axiomatizing Kripke's theory of truth. Journal of Symbolic Logic, 71, 677-712.
    • (2006) Journal of Symbolic Logic , vol.71 , pp. 677-712
    • Halbach, V.1    Horsten, L.2
  • 12
    • 0000235860 scopus 로고
    • Outline of a theory of truth
    • Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72, 690-712.
    • (1975) Journal of Philosophy , vol.72 , pp. 690-712
    • Kripke, S.1
  • 14
    • 33751072385 scopus 로고
    • Maximal consistent sets of instances of Tarski's schema (T
    • McGee, V. (1992). Maximal consistent sets of instances of Tarski's schema (T). Journal of Philosophical Logic, 21, 235-241.
    • (1992) Journal of Philosophical Logic , vol.21 , pp. 235-241
    • McGee, V.1
  • 15
    • 0004242804 scopus 로고
    • Cambridge, MA: Harvard University Press
    • Quine, W. V. O., (1970). Philosopy of Logic. Cambridge, MA: Harvard University Press.
    • (1970) Philosopy of Logic
    • Quine, W.V.O.1
  • 16
    • 4243995084 scopus 로고
    • Some remarks on extending and interpreting theories with a partial predicate for truth
    • Reinhardt, W. (1986). Some remarks on extending and interpreting theories with a partial predicate for truth. Journal of Philosophical Logic, 15, 219-251.
    • (1986) Journal of Philosophical Logic , vol.15 , pp. 219-251
    • Reinhardt, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.