-
1
-
-
38649142848
-
The effect of exposure on landscape scale soil surface temperatures and species distribution models
-
Ashcroft, M. et al. 2008. The effect of exposure on landscape scale soil surface temperatures and species distribution models. – Landscape Ecol. 23: 211–225.
-
(2008)
Landscape Ecol
, vol.23
, pp. 211-225
-
-
Ashcroft, M.1
-
2
-
-
77954718343
-
Identifying refugia from climate change
-
Ashcroft, M. B. 2010. Identifying refugia from climate change. – J. Biogeogr. 37: 1407–1413.
-
(2010)
J. Biogeogr
, vol.37
, pp. 1407-1413
-
-
Ashcroft, M.B.1
-
3
-
-
84860689596
-
Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 × 300 km) and diverse region
-
Ashcroft, M. B. and Gollan, J. R. 2012. Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 × 300 km) and diverse region. – Int. J. Climatol. 32: 2134–2148.
-
(2012)
Int. J. Climatol
, vol.32
, pp. 2134-2148
-
-
Ashcroft, M.B.1
Gollan, J.R.2
-
4
-
-
84860668411
-
A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix
-
Ashcroft, M. B. et al. 2012. A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix. – Global Change Biol. 18: 1866–1879.
-
(2012)
Global Change Biol
, vol.18
, pp. 1866-1879
-
-
Ashcroft, M.B.1
-
5
-
-
33847675260
-
Species distribution models and ecological theory: a critical assessment and some possible new approaches
-
Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. – Ecol. Model. 200: 1–19.
-
(2007)
Ecol. Model
, vol.200
, pp. 1-19
-
-
Austin, M.1
-
6
-
-
78649999983
-
Improving species distribution models for climate change studies: variable selection and scale
-
Austin, M. P. and Van Niel, K. P. 2011. Improving species distribution models for climate change studies: variable selection and scale. – J. Biogeogr. 38: 1–8.
-
(2011)
J. Biogeogr
, vol.38
, pp. 1-8
-
-
Austin, M.P.1
Van Niel, K.P.2
-
7
-
-
84867148221
-
Selecting pseudo-absences for species distribution models: how, where and how many? – Methods Ecol
-
Barbet-Massin, M. et al. 2012. Selecting pseudo-absences for species distribution models: how, where and how many? – Methods Ecol. Evol. 3: 327–338.
-
(2012)
Evol
, vol.3
, pp. 327-338
-
-
Barbet-Massin, M.1
-
8
-
-
45049087751
-
Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland
-
Bennie, J. et al. 2008. Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. – Ecol. Model. 216: 47–59.
-
(2008)
Ecol. Model
, vol.216
, pp. 47-59
-
-
Bennie, J.1
-
9
-
-
36549008682
-
High-resolution spatial modeling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States
-
Daly, C. et al. 2007. High-resolution spatial modeling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States. – J. Appl. Meteorol. Climatol. 46: 1565–1586.
-
(2007)
J. Appl. Meteorol. Climatol
, vol.46
, pp. 1565-1586
-
-
Daly, C.1
-
10
-
-
84954552740
-
Weather stations lack forest data
-
De Frenne, P. and Verheyen, K. 2016. Weather stations lack forest data. – Science 351: 234–234.
-
(2016)
Science
, vol.351
, pp. 234
-
-
De Frenne, P.1
Verheyen, K.2
-
11
-
-
84887423046
-
Microclimate moderates plant responses to macroclimate warming
-
De Frenne, P. et al. 2013. Microclimate moderates plant responses to macroclimate warming. – Proc. Natl Acad. Sci. USA 110: 18561–18565.
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 18561-18565
-
-
De Frenne, P.1
-
12
-
-
78650784340
-
A climatic basis for microrefugia: the influence of terrain on climate
-
Dobrowski, S. Z. 2011. A climatic basis for microrefugia: the influence of terrain on climate. – Global Change Biol. 17: 1022–1035.
-
(2011)
Global Change Biol
, vol.17
, pp. 1022-1035
-
-
Dobrowski, S.Z.1
-
13
-
-
84864479329
-
Extinction debt of high-mountain plants under twenty-first-century climate change
-
Dullinger, S. et al. 2012. Extinction debt of high-mountain plants under twenty-first-century climate change. – Nat. Clim. Change 2: 619–622.
-
(2012)
Nat. Clim. Change
, vol.2
, pp. 619-622
-
-
Dullinger, S.1
-
14
-
-
33645917058
-
Novel methods improve prediction of species’ distributions from occurrence data
-
Elith, J. et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. – Ecography 29: 129–151.
-
(2006)
Ecography
, vol.29
, pp. 129-151
-
-
Elith, J.1
-
15
-
-
84937857023
-
Global mountain topography and the fate of montane species under climate change
-
Elsen, P. R. and Tingley, M. W. 2015. Global mountain topography and the fate of montane species under climate change. – Nat. Clim. Change 5: 772–776.
-
(2015)
Nat. Clim. Change
, vol.5
, pp. 772-776
-
-
Elsen, P.R.1
Tingley, M.W.2
-
16
-
-
79957814431
-
21st century climate change threatens mountain flora unequally across Europe
-
Engler, R. et al. 2011. 21st century climate change threatens mountain flora unequally across Europe. – Global Change Biol. 17: 2330–2341.
-
(2011)
Global Change Biol
, vol.17
, pp. 2330-2341
-
-
Engler, R.1
-
17
-
-
84900118830
-
Modeling species distribution and change using random forest
-
– In, Drew, C. A., (eds),, Springer
-
Evans, J. S. et al. 2011. Modeling species distribution and change using random forest. – In: Drew, C. A. et al. (eds), Predictive species and habitat modeling in landscape ecology. Springer, pp. 139–159.
-
(2011)
Predictive species and habitat modeling in landscape ecology
, pp. 139-159
-
-
Evans, J.S.1
-
18
-
-
84928614277
-
Evaluation of climate models
-
– In, Stocker, T. F., (eds),, Cambridge Univ. Press
-
Flato, G. et al. 2013. Evaluation of climate models. – In: Stocker, T. F. et al. (eds), Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, pp. 741–882.
-
(2013)
Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
, pp. 741-882
-
-
Flato, G.1
-
19
-
-
84871936139
-
Modeling plant species distributions under future climates: how fine scale do climate projections need to be?
-
Franklin, J. et al. 2013. Modeling plant species distributions under future climates: how fine scale do climate projections need to be? – Global Change Biol. 19: 473–483.
-
(2013)
Global Change Biol
, vol.19
, pp. 473-483
-
-
Franklin, J.1
-
20
-
-
84355166590
-
On the use of weather data in ecological studies along altitudinal and latitudinal gradients
-
Graae, B. J. et al. 2012. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. – Oikos 121: 3–19.
-
(2012)
Oikos
, vol.121
, pp. 3-19
-
-
Graae, B.J.1
-
21
-
-
84903595700
-
Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia
-
Hannah, L. et al. 2014. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. – Trends Ecol. Evol. 29: 390–397.
-
(2014)
Trends Ecol. Evol
, vol.29
, pp. 390-397
-
-
Hannah, L.1
-
22
-
-
29544443445
-
Very high resolution interpolated climate surfaces for global land areas
-
Hijmans, R. J. et al. 2005. Very high resolution interpolated climate surfaces for global land areas. – Int. J. Climatol. 25: 1965–1978.
-
(2005)
Int. J. Climatol
, vol.25
, pp. 1965-1978
-
-
Hijmans, R.J.1
-
23
-
-
85026707560
-
ANUSPLIN
-
School of Environment and Society, Australian National Univ., <, >
-
Hutchinson, M. F. 2004. ANUSPLIN. – Version 4.3, Fenner School of Environment and Society, Australian National Univ., < http://fennerschool.anu.edu.au >.
-
(2004)
Version 4
, vol.3
, pp. Fenner
-
-
Hutchinson, M.F.1
-
24
-
-
83155174796
-
Refugia: identifying and understanding safe havens for biodiversity under climate change
-
Keppel, G. et al. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. – Global Ecol. Biogeogr. 21: 393–404.
-
(2012)
Global Ecol. Biogeogr
, vol.21
, pp. 393-404
-
-
Keppel, G.1
-
25
-
-
84926658658
-
The capacity of refugia for conservation planning under climate change
-
Keppel, G. et al. 2015. The capacity of refugia for conservation planning under climate change. – Front. Ecol. Environ. 13: 106–112.
-
(2015)
Front. Ecol. Environ
, vol.13
, pp. 106-112
-
-
Keppel, G.1
-
27
-
-
20444488428
-
Selecting thresholds of occurrence in the prediction of species distributions
-
Liu, C. R. et al. 2005. Selecting thresholds of occurrence in the prediction of species distributions. – Ecography 28: 385–393.
-
(2005)
Ecography
, vol.28
, pp. 385-393
-
-
Liu, C.R.1
-
28
-
-
38949161848
-
AUC: a misleading measure of the performance of predictive distribution models
-
Lobo, J. M. et al. 2008. AUC: a misleading measure of the performance of predictive distribution models. – Global Ecol. Biogeogr. 17: 145–151.
-
(2008)
Global Ecol. Biogeogr
, vol.17
, pp. 145-151
-
-
Lobo, J.M.1
-
29
-
-
27744442556
-
Gradient analysis, the next generation: towards more plant-relevant explanatory variables
-
Lookingbill, T. and Urban, D. 2005. Gradient analysis, the next generation: towards more plant-relevant explanatory variables. – Can. J. For. Res. 35: 1744–1753.
-
(2005)
Can. J. For. Res
, vol.35
, pp. 1744-1753
-
-
Lookingbill, T.1
Urban, D.2
-
31
-
-
84936875085
-
Using Gaussian Bayesian networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution
-
Meineri, E. et al. 2015. Using Gaussian Bayesian networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution. – Ecol. Model. 313: 127–136.
-
(2015)
Ecol. Model
, vol.313
, pp. 127-136
-
-
Meineri, E.1
-
32
-
-
84857678741
-
Glacial survival of boreal trees in northern Scandinavia
-
Parducci, L. et al. 2012. Glacial survival of boreal trees in northern Scandinavia. – Science 335: 1083–1086.
-
(2012)
Science
, vol.335
, pp. 1083-1086
-
-
Parducci, L.1
-
33
-
-
84883551298
-
Microclimatic challenges in global change biology
-
Potter, K. A. et al. 2013. Microclimatic challenges in global change biology. – Global Change Biol. 19: 2932–2939.
-
(2013)
Global Change Biol
, vol.19
, pp. 2932-2939
-
-
Potter, K.A.1
-
34
-
-
84894238240
-
Very high resolution environmental predictors in species distribution models: moving beyond topography? – Progr. Phys
-
Pradervand, J.-N. et al. 2014. Very high resolution environmental predictors in species distribution models: moving beyond topography? – Progr. Phys. Geogr. 38: 79–96.
-
(2014)
Geogr
, vol.38
, pp. 79-96
-
-
Pradervand, J.-N.1
-
35
-
-
0027089143
-
A global biome model based on plant physiology and dominance, soil properties and climate
-
Prentice, I. C. et al. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. – J. Biogeogr. 19: 117–134.
-
(1992)
J. Biogeogr
, vol.19
, pp. 117-134
-
-
Prentice, I.C.1
-
36
-
-
65549157944
-
Climate change and plant distribution: local models predict high-elevation persistence
-
Randin, C. F. et al. 2009. Climate change and plant distribution: local models predict high-elevation persistence. – Global Change Biol. 15: 1557–1569.
-
(2009)
Global Change Biol
, vol.15
, pp. 1557-1569
-
-
Randin, C.F.1
-
38
-
-
84904014198
-
Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? – Divers
-
Slavich, E. et al. 2014. Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? – Divers. Distrib. 20: 952–963.
-
(2014)
Distrib
, vol.20
, pp. 952-963
-
-
Slavich, E.1
-
39
-
-
38149053950
-
On the calculation of the topographic wetness index: evaluation of different methods based on field observations
-
Sørensen, R. et al. 2005. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. – Hydrol. Earth Syst. Sci. Discussions 2: 1807–1834.
-
(2005)
Hydrol. Earth Syst. Sci. Discussions
, vol.2
, pp. 1807-1834
-
-
Sørensen, R.1
-
40
-
-
84881611063
-
Improved spatial estimates of climate predict patchier species distributions
-
Storlie, C. J. et al. 2013. Improved spatial estimates of climate predict patchier species distributions. – Divers. Distrib. 19: 1106–1113.
-
(2013)
Divers. Distrib
, vol.19
, pp. 1106-1113
-
-
Storlie, C.J.1
-
41
-
-
64649098806
-
BIOMOD – a platform for ensemble forecasting of species distributions
-
Thuiller, W. et al. 2009. BIOMOD – a platform for ensemble forecasting of species distributions. – Ecography 32: 369–373.
-
(2009)
Ecography
, vol.32
, pp. 369-373
-
-
Thuiller, W.1
-
42
-
-
42949101271
-
Spatial scale affects bioclimate model projections of climate change impacts on mountain plants
-
Trivedi, M. R. et al. 2008. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. – Global Change Biol. 14: 1089–1103.
-
(2008)
Global Change Biol
, vol.14
, pp. 1089-1103
-
-
Trivedi, M.R.1
-
43
-
-
84880281468
-
Fine-resolved, near-coastal spatiotemporal variation of temperature in response to insolation
-
Vercauteren, N. et al. 2013. Fine-resolved, near-coastal spatiotemporal variation of temperature in response to insolation. – J. Appl. Meteorol. Climatol. 52: 1208–1220.
-
(2013)
J. Appl. Meteorol. Climatol
, vol.52
, pp. 1208-1220
-
-
Vercauteren, N.1
-
44
-
-
0033179955
-
Predictive mapping of alpine grasslands in Switzerland: species versus community approach
-
Zimmermann, N. E. and Kienast, F. 1999. Predictive mapping of alpine grasslands in Switzerland: species versus community approach. – J. Veg. Sci 10: 469–482.
-
(1999)
J. Veg. Sci
, vol.10
, pp. 469-482
-
-
Zimmermann, N.E.1
Kienast, F.2
|