메뉴 건너뛰기




Volumn 40, Issue 8, 2017, Pages 1003-1013

Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection

Author keywords

[No Author keywords available]

Indexed keywords

ALPINE ENVIRONMENT; CLIMATE CHANGE; CLIMATE FORCING; CLIMATE MODELING; DETECTION METHOD; ECOLOGICAL MODELING; ENVIRONMENTAL FACTOR; HETEROGENEITY; LOCAL EXTINCTION; MICROHABITAT; SPATIAL RESOLUTION; TOPOGRAPHY;

EID: 84988864366     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/ecog.02494     Document Type: Article
Times cited : (90)

References (44)
  • 1
    • 38649142848 scopus 로고    scopus 로고
    • The effect of exposure on landscape scale soil surface temperatures and species distribution models
    • Ashcroft, M. et al. 2008. The effect of exposure on landscape scale soil surface temperatures and species distribution models. – Landscape Ecol. 23: 211–225.
    • (2008) Landscape Ecol , vol.23 , pp. 211-225
    • Ashcroft, M.1
  • 2
    • 77954718343 scopus 로고    scopus 로고
    • Identifying refugia from climate change
    • Ashcroft, M. B. 2010. Identifying refugia from climate change. – J. Biogeogr. 37: 1407–1413.
    • (2010) J. Biogeogr , vol.37 , pp. 1407-1413
    • Ashcroft, M.B.1
  • 3
    • 84860689596 scopus 로고    scopus 로고
    • Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 × 300 km) and diverse region
    • Ashcroft, M. B. and Gollan, J. R. 2012. Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 × 300 km) and diverse region. – Int. J. Climatol. 32: 2134–2148.
    • (2012) Int. J. Climatol , vol.32 , pp. 2134-2148
    • Ashcroft, M.B.1    Gollan, J.R.2
  • 4
    • 84860668411 scopus 로고    scopus 로고
    • A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix
    • Ashcroft, M. B. et al. 2012. A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix. – Global Change Biol. 18: 1866–1879.
    • (2012) Global Change Biol , vol.18 , pp. 1866-1879
    • Ashcroft, M.B.1
  • 5
    • 33847675260 scopus 로고    scopus 로고
    • Species distribution models and ecological theory: a critical assessment and some possible new approaches
    • Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. – Ecol. Model. 200: 1–19.
    • (2007) Ecol. Model , vol.200 , pp. 1-19
    • Austin, M.1
  • 6
    • 78649999983 scopus 로고    scopus 로고
    • Improving species distribution models for climate change studies: variable selection and scale
    • Austin, M. P. and Van Niel, K. P. 2011. Improving species distribution models for climate change studies: variable selection and scale. – J. Biogeogr. 38: 1–8.
    • (2011) J. Biogeogr , vol.38 , pp. 1-8
    • Austin, M.P.1    Van Niel, K.P.2
  • 7
    • 84867148221 scopus 로고    scopus 로고
    • Selecting pseudo-absences for species distribution models: how, where and how many? – Methods Ecol
    • Barbet-Massin, M. et al. 2012. Selecting pseudo-absences for species distribution models: how, where and how many? – Methods Ecol. Evol. 3: 327–338.
    • (2012) Evol , vol.3 , pp. 327-338
    • Barbet-Massin, M.1
  • 8
    • 45049087751 scopus 로고    scopus 로고
    • Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland
    • Bennie, J. et al. 2008. Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. – Ecol. Model. 216: 47–59.
    • (2008) Ecol. Model , vol.216 , pp. 47-59
    • Bennie, J.1
  • 9
    • 36549008682 scopus 로고    scopus 로고
    • High-resolution spatial modeling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States
    • Daly, C. et al. 2007. High-resolution spatial modeling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States. – J. Appl. Meteorol. Climatol. 46: 1565–1586.
    • (2007) J. Appl. Meteorol. Climatol , vol.46 , pp. 1565-1586
    • Daly, C.1
  • 10
    • 84954552740 scopus 로고    scopus 로고
    • Weather stations lack forest data
    • De Frenne, P. and Verheyen, K. 2016. Weather stations lack forest data. – Science 351: 234–234.
    • (2016) Science , vol.351 , pp. 234
    • De Frenne, P.1    Verheyen, K.2
  • 11
    • 84887423046 scopus 로고    scopus 로고
    • Microclimate moderates plant responses to macroclimate warming
    • De Frenne, P. et al. 2013. Microclimate moderates plant responses to macroclimate warming. – Proc. Natl Acad. Sci. USA 110: 18561–18565.
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 18561-18565
    • De Frenne, P.1
  • 12
    • 78650784340 scopus 로고    scopus 로고
    • A climatic basis for microrefugia: the influence of terrain on climate
    • Dobrowski, S. Z. 2011. A climatic basis for microrefugia: the influence of terrain on climate. – Global Change Biol. 17: 1022–1035.
    • (2011) Global Change Biol , vol.17 , pp. 1022-1035
    • Dobrowski, S.Z.1
  • 13
    • 84864479329 scopus 로고    scopus 로고
    • Extinction debt of high-mountain plants under twenty-first-century climate change
    • Dullinger, S. et al. 2012. Extinction debt of high-mountain plants under twenty-first-century climate change. – Nat. Clim. Change 2: 619–622.
    • (2012) Nat. Clim. Change , vol.2 , pp. 619-622
    • Dullinger, S.1
  • 14
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species’ distributions from occurrence data
    • Elith, J. et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. – Ecography 29: 129–151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 15
    • 84937857023 scopus 로고    scopus 로고
    • Global mountain topography and the fate of montane species under climate change
    • Elsen, P. R. and Tingley, M. W. 2015. Global mountain topography and the fate of montane species under climate change. – Nat. Clim. Change 5: 772–776.
    • (2015) Nat. Clim. Change , vol.5 , pp. 772-776
    • Elsen, P.R.1    Tingley, M.W.2
  • 16
    • 79957814431 scopus 로고    scopus 로고
    • 21st century climate change threatens mountain flora unequally across Europe
    • Engler, R. et al. 2011. 21st century climate change threatens mountain flora unequally across Europe. – Global Change Biol. 17: 2330–2341.
    • (2011) Global Change Biol , vol.17 , pp. 2330-2341
    • Engler, R.1
  • 17
    • 84900118830 scopus 로고    scopus 로고
    • Modeling species distribution and change using random forest
    • – In, Drew, C. A., (eds),, Springer
    • Evans, J. S. et al. 2011. Modeling species distribution and change using random forest. – In: Drew, C. A. et al. (eds), Predictive species and habitat modeling in landscape ecology. Springer, pp. 139–159.
    • (2011) Predictive species and habitat modeling in landscape ecology , pp. 139-159
    • Evans, J.S.1
  • 19
    • 84871936139 scopus 로고    scopus 로고
    • Modeling plant species distributions under future climates: how fine scale do climate projections need to be?
    • Franklin, J. et al. 2013. Modeling plant species distributions under future climates: how fine scale do climate projections need to be? – Global Change Biol. 19: 473–483.
    • (2013) Global Change Biol , vol.19 , pp. 473-483
    • Franklin, J.1
  • 20
    • 84355166590 scopus 로고    scopus 로고
    • On the use of weather data in ecological studies along altitudinal and latitudinal gradients
    • Graae, B. J. et al. 2012. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. – Oikos 121: 3–19.
    • (2012) Oikos , vol.121 , pp. 3-19
    • Graae, B.J.1
  • 21
    • 84903595700 scopus 로고    scopus 로고
    • Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia
    • Hannah, L. et al. 2014. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. – Trends Ecol. Evol. 29: 390–397.
    • (2014) Trends Ecol. Evol , vol.29 , pp. 390-397
    • Hannah, L.1
  • 22
    • 29544443445 scopus 로고    scopus 로고
    • Very high resolution interpolated climate surfaces for global land areas
    • Hijmans, R. J. et al. 2005. Very high resolution interpolated climate surfaces for global land areas. – Int. J. Climatol. 25: 1965–1978.
    • (2005) Int. J. Climatol , vol.25 , pp. 1965-1978
    • Hijmans, R.J.1
  • 23
    • 85026707560 scopus 로고    scopus 로고
    • ANUSPLIN
    • School of Environment and Society, Australian National Univ., <, >
    • Hutchinson, M. F. 2004. ANUSPLIN. – Version 4.3, Fenner School of Environment and Society, Australian National Univ., < http://fennerschool.anu.edu.au >.
    • (2004) Version 4 , vol.3 , pp. Fenner
    • Hutchinson, M.F.1
  • 24
    • 83155174796 scopus 로고    scopus 로고
    • Refugia: identifying and understanding safe havens for biodiversity under climate change
    • Keppel, G. et al. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. – Global Ecol. Biogeogr. 21: 393–404.
    • (2012) Global Ecol. Biogeogr , vol.21 , pp. 393-404
    • Keppel, G.1
  • 25
    • 84926658658 scopus 로고    scopus 로고
    • The capacity of refugia for conservation planning under climate change
    • Keppel, G. et al. 2015. The capacity of refugia for conservation planning under climate change. – Front. Ecol. Environ. 13: 106–112.
    • (2015) Front. Ecol. Environ , vol.13 , pp. 106-112
    • Keppel, G.1
  • 27
    • 20444488428 scopus 로고    scopus 로고
    • Selecting thresholds of occurrence in the prediction of species distributions
    • Liu, C. R. et al. 2005. Selecting thresholds of occurrence in the prediction of species distributions. – Ecography 28: 385–393.
    • (2005) Ecography , vol.28 , pp. 385-393
    • Liu, C.R.1
  • 28
    • 38949161848 scopus 로고    scopus 로고
    • AUC: a misleading measure of the performance of predictive distribution models
    • Lobo, J. M. et al. 2008. AUC: a misleading measure of the performance of predictive distribution models. – Global Ecol. Biogeogr. 17: 145–151.
    • (2008) Global Ecol. Biogeogr , vol.17 , pp. 145-151
    • Lobo, J.M.1
  • 29
    • 27744442556 scopus 로고    scopus 로고
    • Gradient analysis, the next generation: towards more plant-relevant explanatory variables
    • Lookingbill, T. and Urban, D. 2005. Gradient analysis, the next generation: towards more plant-relevant explanatory variables. – Can. J. For. Res. 35: 1744–1753.
    • (2005) Can. J. For. Res , vol.35 , pp. 1744-1753
    • Lookingbill, T.1    Urban, D.2
  • 31
    • 84936875085 scopus 로고    scopus 로고
    • Using Gaussian Bayesian networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution
    • Meineri, E. et al. 2015. Using Gaussian Bayesian networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution. – Ecol. Model. 313: 127–136.
    • (2015) Ecol. Model , vol.313 , pp. 127-136
    • Meineri, E.1
  • 32
    • 84857678741 scopus 로고    scopus 로고
    • Glacial survival of boreal trees in northern Scandinavia
    • Parducci, L. et al. 2012. Glacial survival of boreal trees in northern Scandinavia. – Science 335: 1083–1086.
    • (2012) Science , vol.335 , pp. 1083-1086
    • Parducci, L.1
  • 33
    • 84883551298 scopus 로고    scopus 로고
    • Microclimatic challenges in global change biology
    • Potter, K. A. et al. 2013. Microclimatic challenges in global change biology. – Global Change Biol. 19: 2932–2939.
    • (2013) Global Change Biol , vol.19 , pp. 2932-2939
    • Potter, K.A.1
  • 34
    • 84894238240 scopus 로고    scopus 로고
    • Very high resolution environmental predictors in species distribution models: moving beyond topography? – Progr. Phys
    • Pradervand, J.-N. et al. 2014. Very high resolution environmental predictors in species distribution models: moving beyond topography? – Progr. Phys. Geogr. 38: 79–96.
    • (2014) Geogr , vol.38 , pp. 79-96
    • Pradervand, J.-N.1
  • 35
    • 0027089143 scopus 로고
    • A global biome model based on plant physiology and dominance, soil properties and climate
    • Prentice, I. C. et al. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. – J. Biogeogr. 19: 117–134.
    • (1992) J. Biogeogr , vol.19 , pp. 117-134
    • Prentice, I.C.1
  • 36
    • 65549157944 scopus 로고    scopus 로고
    • Climate change and plant distribution: local models predict high-elevation persistence
    • Randin, C. F. et al. 2009. Climate change and plant distribution: local models predict high-elevation persistence. – Global Change Biol. 15: 1557–1569.
    • (2009) Global Change Biol , vol.15 , pp. 1557-1569
    • Randin, C.F.1
  • 38
    • 84904014198 scopus 로고    scopus 로고
    • Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? – Divers
    • Slavich, E. et al. 2014. Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? – Divers. Distrib. 20: 952–963.
    • (2014) Distrib , vol.20 , pp. 952-963
    • Slavich, E.1
  • 39
    • 38149053950 scopus 로고    scopus 로고
    • On the calculation of the topographic wetness index: evaluation of different methods based on field observations
    • Sørensen, R. et al. 2005. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. – Hydrol. Earth Syst. Sci. Discussions 2: 1807–1834.
    • (2005) Hydrol. Earth Syst. Sci. Discussions , vol.2 , pp. 1807-1834
    • Sørensen, R.1
  • 40
    • 84881611063 scopus 로고    scopus 로고
    • Improved spatial estimates of climate predict patchier species distributions
    • Storlie, C. J. et al. 2013. Improved spatial estimates of climate predict patchier species distributions. – Divers. Distrib. 19: 1106–1113.
    • (2013) Divers. Distrib , vol.19 , pp. 1106-1113
    • Storlie, C.J.1
  • 41
    • 64649098806 scopus 로고    scopus 로고
    • BIOMOD – a platform for ensemble forecasting of species distributions
    • Thuiller, W. et al. 2009. BIOMOD – a platform for ensemble forecasting of species distributions. – Ecography 32: 369–373.
    • (2009) Ecography , vol.32 , pp. 369-373
    • Thuiller, W.1
  • 42
    • 42949101271 scopus 로고    scopus 로고
    • Spatial scale affects bioclimate model projections of climate change impacts on mountain plants
    • Trivedi, M. R. et al. 2008. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. – Global Change Biol. 14: 1089–1103.
    • (2008) Global Change Biol , vol.14 , pp. 1089-1103
    • Trivedi, M.R.1
  • 43
    • 84880281468 scopus 로고    scopus 로고
    • Fine-resolved, near-coastal spatiotemporal variation of temperature in response to insolation
    • Vercauteren, N. et al. 2013. Fine-resolved, near-coastal spatiotemporal variation of temperature in response to insolation. – J. Appl. Meteorol. Climatol. 52: 1208–1220.
    • (2013) J. Appl. Meteorol. Climatol , vol.52 , pp. 1208-1220
    • Vercauteren, N.1
  • 44
    • 0033179955 scopus 로고    scopus 로고
    • Predictive mapping of alpine grasslands in Switzerland: species versus community approach
    • Zimmermann, N. E. and Kienast, F. 1999. Predictive mapping of alpine grasslands in Switzerland: species versus community approach. – J. Veg. Sci 10: 469–482.
    • (1999) J. Veg. Sci , vol.10 , pp. 469-482
    • Zimmermann, N.E.1    Kienast, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.