-
2
-
-
84878047893
-
Nanostructured sulfur cathodes
-
[2] Yang, Y., Zheng, G., Cui, Y., Nanostructured sulfur cathodes. Chem. Soc. Rev. 42 (2013), 3018–3032.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 3018-3032
-
-
Yang, Y.1
Zheng, G.2
Cui, Y.3
-
3
-
-
84912542845
-
Rechargeable lithium–sulfur batteries
-
[3] Manthiram, A., Fu, Y., Chung, S.-H., Zu, C., Su, Y.-S., Rechargeable lithium–sulfur batteries. Chem. Rev. 114 (2014), 11751–11787.
-
(2014)
Chem. Rev.
, vol.114
, pp. 11751-11787
-
-
Manthiram, A.1
Fu, Y.2
Chung, S.-H.3
Zu, C.4
Su, Y.-S.5
-
4
-
-
84955507748
-
Carbon materials for Li–S batteries: Functional evolution and performance improvement
-
[4] Liang, J., Sun, Z.-H., Li, F., Cheng, H.-M., Carbon materials for Li–S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2 (2016), 76–106.
-
(2016)
Energy Storage Mater.
, vol.2
, pp. 76-106
-
-
Liang, J.1
Sun, Z.-H.2
Li, F.3
Cheng, H.-M.4
-
5
-
-
78049377906
-
Advances in Li–S batteries
-
[5] Ji, X., Nazar, L.F., Advances in Li–S batteries. J. Mater. Chem. 20 (2010), 9821–9826.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 9821-9826
-
-
Ji, X.1
Nazar, L.F.2
-
6
-
-
84881089310
-
Carbon–sulfur composites for Li–S batteries: status and prospects
-
[6] Wang, D.-W., Zeng, Q., Zhou, G., Yin, L., Li, F., Cheng, H.-M., et al. Carbon–sulfur composites for Li–S batteries: status and prospects. J. Mater. Chem. A 1 (2013), 9382–9394.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 9382-9394
-
-
Wang, D.-W.1
Zeng, Q.2
Zhou, G.3
Yin, L.4
Li, F.5
Cheng, H.-M.6
-
7
-
-
84889672090
-
Lithium–sulfur batteries: electrochemistry, materials, and prospects
-
[7] Yin, Y.-X., Xin, S., Guo, Y.-G., Wan, L.-J., Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52 (2013), 13186–13200.
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 13186-13200
-
-
Yin, Y.-X.1
Xin, S.2
Guo, Y.-G.3
Wan, L.-J.4
-
8
-
-
84945305600
-
Graphene materials for lithium–sulfur batteries
-
[8] Yu, M., Li, R., Wu, M., Shi, G., Graphene materials for lithium–sulfur batteries. Energy Storage Mater. 1 (2015), 51–73.
-
(2015)
Energy Storage Mater.
, vol.1
, pp. 51-73
-
-
Yu, M.1
Li, R.2
Wu, M.3
Shi, G.4
-
9
-
-
84916607238
-
Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide
-
[9] Wang, Z., Dong, Y., Li, H., Zhao, Z., Bin Wu, H., Hao, C., et al. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun., 5, 2014, 5002.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5002
-
-
Wang, Z.1
Dong, Y.2
Li, H.3
Zhao, Z.4
Bin Wu, H.5
Hao, C.6
-
10
-
-
84874966187
-
Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries
-
[10] Zheng, G., Zhang, Q., Cha, J.J., Yang, Y., Li, W., Seh, Z.W., et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13 (2013), 1265–1270.
-
(2013)
Nano Lett.
, vol.13
, pp. 1265-1270
-
-
Zheng, G.1
Zhang, Q.2
Cha, J.J.3
Yang, Y.4
Li, W.5
Seh, Z.W.6
-
11
-
-
84914149673
-
Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries
-
[11] Zhou, W., Xiao, X., Cai, M., Yang, L., Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano Lett. 14 (2014), 5250–5256.
-
(2014)
Nano Lett.
, vol.14
, pp. 5250-5256
-
-
Zhou, W.1
Xiao, X.2
Cai, M.3
Yang, L.4
-
12
-
-
84866352753
-
Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries
-
[12] Zhang, C., Wu, H.B., Yuan, C., Guo, Z., Lou, X.W., Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51 (2012), 9592–9595.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 9592-9595
-
-
Zhang, C.1
Wu, H.B.2
Yuan, C.3
Guo, Z.4
Lou, X.W.5
-
13
-
-
79959209197
-
Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries
-
[13] Jayaprakash, N., Shen, J., Moganty, S.S., Corona, A., Archer, L.A., Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed. 50 (2011), 5904–5908.
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 5904-5908
-
-
Jayaprakash, N.1
Shen, J.2
Moganty, S.S.3
Corona, A.4
Archer, L.A.5
-
14
-
-
84940436561
-
Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium–sulfur batteries
-
[14] Zhou, W., Wang, C., Zhang, Q., Abruña, H.D., He, Y., Wang, J., et al. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium–sulfur batteries. Adv. Energy Mater., 5, 2015, 1401752.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1401752
-
-
Zhou, W.1
Wang, C.2
Zhang, Q.3
Abruña, H.D.4
He, Y.5
Wang, J.6
-
15
-
-
84912558280
-
Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium–sulfur batteries
-
[15] Peng, H.-J., Liang, J., Zhu, L., Huang, J.-Q., Cheng, X.-B., Guo, X., et al. Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium–sulfur batteries. ACS Nano 8 (2014), 11280–11289.
-
(2014)
ACS Nano
, vol.8
, pp. 11280-11289
-
-
Peng, H.-J.1
Liang, J.2
Zhu, L.3
Huang, J.-Q.4
Cheng, X.-B.5
Guo, X.6
-
16
-
-
84922590634
-
Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries
-
[16] Lyu, Z., Xu, D., Yang, L., Che, R., Feng, R., Zhao, J., et al. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries. Nano Energy 12 (2015), 657–665.
-
(2015)
Nano Energy
, vol.12
, pp. 657-665
-
-
Lyu, Z.1
Xu, D.2
Yang, L.3
Che, R.4
Feng, R.5
Zhao, J.6
-
17
-
-
84937570512
-
Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life
-
[17] Chen, S., Sun, B., Xie, X., Mondal, A.K., Huang, X., Wang, G., Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy 16 (2015), 268–280.
-
(2015)
Nano Energy
, vol.16
, pp. 268-280
-
-
Chen, S.1
Sun, B.2
Xie, X.3
Mondal, A.K.4
Huang, X.5
Wang, G.6
-
18
-
-
80054030179
-
Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries
-
[18] Zheng, G., Yang, Y., Cha, J.J., Hong, S.S., Cui, Y., Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11 (2011), 4462–4467.
-
(2011)
Nano Lett.
, vol.11
, pp. 4462-4467
-
-
Zheng, G.1
Yang, Y.2
Cha, J.J.3
Hong, S.S.4
Cui, Y.5
-
19
-
-
84889666309
-
Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries
-
[19] Moon, S., Jung, Y.H., Jung, W.K., Jung, D.S., Choi, J.W., Kim, D.K., Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv. Mater. 25 (2013), 6547–6553.
-
(2013)
Adv. Mater.
, vol.25
, pp. 6547-6553
-
-
Moon, S.1
Jung, Y.H.2
Jung, W.K.3
Jung, D.S.4
Choi, J.W.5
Kim, D.K.6
-
20
-
-
80054036547
-
Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries
-
[20] Guo, J., Xu, Y., Wang, C., Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 11 (2011), 4288–4294.
-
(2011)
Nano Lett.
, vol.11
, pp. 4288-4294
-
-
Guo, J.1
Xu, Y.2
Wang, C.3
-
21
-
-
84902112359
-
3D hyperbranched hollow carbon nanorod architectures for high-performance lithium–sulfur batteries
-
[21] Chen, S., Huang, X., Liu, H., Sun, B., Yeoh, W., Li, K., et al. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium–sulfur batteries. Adv. Energy Mater., 4, 2014, 1301761.
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1301761
-
-
Chen, S.1
Huang, X.2
Liu, H.3
Sun, B.4
Yeoh, W.5
Li, K.6
-
22
-
-
79960213032
-
Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites
-
[22] Liu, R., Mahurin, S.M., Li, C., Unocic, R.R., Idrobo, J.C., Gao, H., et al. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. 50 (2011), 6799–6802.
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 6799-6802
-
-
Liu, R.1
Mahurin, S.M.2
Li, C.3
Unocic, R.R.4
Idrobo, J.C.5
Gao, H.6
-
23
-
-
34250633269
-
Fabrication of hollow carbon nanospheres encapsulating platinum nanoparticles using a photocatalytic reaction
-
[23] Ng, Y.H., Ikeda, S., Harada, T., Higashida, S., Sakata, T., Mori, H., et al. Fabrication of hollow carbon nanospheres encapsulating platinum nanoparticles using a photocatalytic reaction. Adv. Mater. 19 (2007), 597–601.
-
(2007)
Adv. Mater.
, vol.19
, pp. 597-601
-
-
Ng, Y.H.1
Ikeda, S.2
Harada, T.3
Higashida, S.4
Sakata, T.5
Mori, H.6
-
24
-
-
84901366315
-
Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction
-
[24] Deng, J., Ren, P., Deng, D., Yu, L., Yang, F., Bao, X., Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 7 (2014), 1919–1923.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1919-1923
-
-
Deng, J.1
Ren, P.2
Deng, D.3
Yu, L.4
Yang, F.5
Bao, X.6
-
25
-
-
84871961582
-
Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction
-
[25] Deng, D., Yu, L., Chen, X., Wang, G., Jin, L., Pan, X., et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed. 52 (2013), 371–375.
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 371-375
-
-
Deng, D.1
Yu, L.2
Chen, X.3
Wang, G.4
Jin, L.5
Pan, X.6
-
26
-
-
84989852965
-
Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values
-
[26] Zou, X., Huang, X., Goswami, A., Silva, R., Sathe, B.R., Mikmeková, E., et al. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. 126 (2014), 4461–4465.
-
(2014)
Angew. Chem.
, vol.126
, pp. 4461-4465
-
-
Zou, X.1
Huang, X.2
Goswami, A.3
Silva, R.4
Sathe, B.R.5
Mikmeková, E.6
-
27
-
-
84923203540
-
Carbon nanotube-encapsulated noble metal nanoparticle hybrid as a cathode material for Li-Oxygen batteries
-
[27] Huang, X., Yu, H., Tan, H., Zhu, J., Zhang, W., Wang, C., et al. Carbon nanotube-encapsulated noble metal nanoparticle hybrid as a cathode material for Li-Oxygen batteries. Adv. Funct. Mater. 24 (2014), 6516–6523.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 6516-6523
-
-
Huang, X.1
Yu, H.2
Tan, H.3
Zhu, J.4
Zhang, W.5
Wang, C.6
-
28
-
-
0345491105
-
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density
-
[28] Lee, C., Yang, W., Parr, R.G., Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37 (1988), 785–789.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
29
-
-
0038596731
-
Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr
-
[29] Miehlich, B., Savin, A., Stoll, H., Preuss, H., Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 157 (1989), 200–206.
-
(1989)
Chem. Phys. Lett.
, vol.157
, pp. 200-206
-
-
Miehlich, B.1
Savin, A.2
Stoll, H.3
Preuss, H.4
-
30
-
-
84890021933
-
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
-
[30] Boys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19 (1970), 553–566.
-
(1970)
Mol. Phys.
, vol.19
, pp. 553-566
-
-
Boys, S.F.1
Bernardi, F.2
-
31
-
-
30244527819
-
How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers
-
[31] Simon, S., Duran, M., Dannenberg, J.J., How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers. J. Chem. Phys. 105 (1996), 11024–11031.
-
(1996)
J. Chem. Phys.
, vol.105
, pp. 11024-11031
-
-
Simon, S.1
Duran, M.2
Dannenberg, J.J.3
-
32
-
-
84973381948
-
Gaussian 09, Revision A.1
-
Gaussian, Inc. Wallingford CT
-
[32] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09, Revision A.1. 2009, Gaussian, Inc., Wallingford CT.
-
(2009)
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Scalmani, G.7
Barone, V.8
Mennucci, B.9
Petersson, G.A.10
Nakatsuji, H.11
Caricato, M.12
Li, X.13
Hratchian, H.P.14
Izmaylov, A.F.15
Bloino, J.16
Zheng, G.17
Sonnenberg, J.L.18
Hada, M.19
Ehara, M.20
Toyota, K.21
Fukuda, R.22
Hasegawa, J.23
Ishida, M.24
Nakajima, T.25
Honda, Y.26
Kitao, O.27
Nakai, H.28
Vreven, T.29
Montgomery, J.A.30
Peralta, J.E.31
Ogliaro, F.32
Bearpark, M.33
Heyd, J.J.34
Brothers, E.35
Kudin, K.N.36
Staroverov, V.N.37
Kobayashi, R.38
Normand, J.39
Raghavachari, K.40
Rendell, A.41
Burant, J.C.42
Iyengar, S.S.43
Tomasi, J.44
Cossi, M.45
Rega, N.46
Millam, J.M.47
Klene, M.48
Knox, J.E.49
Cross, J.B.50
Bakken, V.51
Adamo, C.52
Jaramillo, J.53
Gomperts, R.54
Stratmann, R.E.55
Yazyev, O.56
Austin, A.J.57
Cammi, R.58
Pomelli, C.59
Ochterski, J.W.60
Martin, R.L.61
Morokuma, K.62
Zakrzewski, V.G.63
Voth, G.A.64
Salvador, P.65
Dannenberg, J.J.66
Dapprich, S.67
Daniels, A.D.68
Farkas, Ö.69
Foresman, J.B.70
Ortiz, J.V.71
Cioslowski, J.72
Fox, D.J.73
more..
-
33
-
-
85027946601
-
Ultrafast self-assembly of graphene oxide-induced monolithic NiCo–carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors
-
[33] Yang, J., Yu, C., Fan, X., Zhao, C., Qiu, J., Ultrafast self-assembly of graphene oxide-induced monolithic NiCo–carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 25 (2015), 2109–2116.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 2109-2116
-
-
Yang, J.1
Yu, C.2
Fan, X.3
Zhao, C.4
Qiu, J.5
-
34
-
-
35248819705
-
Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review
-
[34] Fan, H.J., Gösele, U., Zacharias, M., Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3 (2007), 1660–1671.
-
(2007)
Small
, vol.3
, pp. 1660-1671
-
-
Fan, H.J.1
Gösele, U.2
Zacharias, M.3
-
35
-
-
84864232891
-
A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries
-
[35] Wang, D.-W., Zhou, G., Li, F., Wu, K.-H., Lu, G.Q., Cheng, H.-M., et al. A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys. Chem. Chem. Phys. 14 (2012), 8703–8710.
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 8703-8710
-
-
Wang, D.-W.1
Zhou, G.2
Li, F.3
Wu, K.-H.4
Lu, G.Q.5
Cheng, H.-M.6
-
36
-
-
0020088998
-
Phenomena of catalytic graphitization
-
[36] Ōya, A., Marsh, H., Phenomena of catalytic graphitization. J. Mater. Sci. 17 (1982), 309–322.
-
(1982)
J. Mater. Sci.
, vol.17
, pp. 309-322
-
-
Ōya, A.1
Marsh, H.2
-
37
-
-
84912558238
-
Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation
-
[37] Peng, H.-J., Hou, T.-Z., Zhang, Q., Huang, J.-Q., Cheng, X.-B., Guo, M.-Q., et al. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation. Adv. Mater. Interfaces, 1, 2014, 1400227.
-
(2014)
Adv. Mater. Interfaces
, vol.1
, pp. 1400227
-
-
Peng, H.-J.1
Hou, T.-Z.2
Zhang, Q.3
Huang, J.-Q.4
Cheng, X.-B.5
Guo, M.-Q.6
-
38
-
-
84897615862
-
Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries
-
[38] Song, J., Xu, T., Gordin, M.L., Zhu, P., Lv, D., Jiang, Y.-B., et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24 (2014), 1243–1250.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 1243-1250
-
-
Song, J.1
Xu, T.2
Gordin, M.L.3
Zhu, P.4
Lv, D.5
Jiang, Y.-B.6
-
39
-
-
84918785060
-
Nitrogen doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries
-
[39] Tang, C., Zhang, Q., Zhao, M.Q., Huang, J.Q., Cheng, X.B., Tian, G.L., et al. Nitrogen doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 26 (2014), 6100–6105.
-
(2014)
Adv. Mater.
, vol.26
, pp. 6100-6105
-
-
Tang, C.1
Zhang, Q.2
Zhao, M.Q.3
Huang, J.Q.4
Cheng, X.B.5
Tian, G.L.6
-
40
-
-
84928926071
-
Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li–S batteries
-
[40] Zhou, G., Zhao, Y., Manthiram, A., Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li–S batteries. Adv. Energy Mater., 5, 2015, 1402263.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1402263
-
-
Zhou, G.1
Zhao, Y.2
Manthiram, A.3
-
41
-
-
84946013090
-
Tailor-made graphene aerogels with inbuilt baffle plates by charge-induced template-directed assembly for high-performance Li–S batteries
-
[41] Zhao, C., Yu, C., Zhang, M., Yang, J., Liu, S., Li, M., et al. Tailor-made graphene aerogels with inbuilt baffle plates by charge-induced template-directed assembly for high-performance Li–S batteries. J. Mater. Chem. A, 3, 2015, 21842.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 21842
-
-
Zhao, C.1
Yu, C.2
Zhang, M.3
Yang, J.4
Liu, S.5
Li, M.6
|