메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Demand forecasting at low aggregation levels using Factored Conditional Restricted Boltzmann Machine

Author keywords

Deep Learning; Energy Prediction; Factored Conditional Restricted Boltzmann Machine; Support Vector Machine

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; ELECTRIC UTILITIES; LEARNING SYSTEMS; METEOROLOGY; PROBLEM SOLVING; STOCHASTIC SYSTEMS; SUPPORT VECTOR MACHINES; TIME SERIES;

EID: 84986571440     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/PSCC.2016.7540994     Document Type: Conference Paper
Times cited : (25)

References (27)
  • 3
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • H. xiang Zhao and F. Magouls, "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 3586-3592, 2012.
    • (2012) Renewable and Sustainable Energy Reviews , vol.16 , Issue.6 , pp. 3586-3592
    • Xiang Zhao, H.1    Magouls, F.2
  • 4
    • 77955152986 scopus 로고    scopus 로고
    • Artificial intelligence for energy conservation in buildings
    • A. I. Dounis, "Artificial intelligence for energy conservation in buildings," Advances in Building Energy Research, vol. 4, no. 1, pp. 267-299, 2010.
    • (2010) Advances in Building Energy Research , vol.4 , Issue.1 , pp. 267-299
    • Dounis, A.I.1
  • 5
    • 84856253869 scopus 로고    scopus 로고
    • Short-term load forecasting based on a semi-parametric additive model
    • Feb.
    • S. Fan and R. Hyndman, "Short-term load forecasting based on a semi-parametric additive model," IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 1 34-141, Feb 2012.
    • (2012) IEEE Transactions on Power Systems , vol.27 , Issue.1 , pp. 134-141
    • Fan, S.1    Hyndman, R.2
  • 6
    • 77956265820 scopus 로고    scopus 로고
    • Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles
    • J. W. Taylor, "Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, vol. 26, no. 4, pp. 627-646, 2010.
    • (2010) International Journal of Forecasting , vol.26 , Issue.4 , pp. 627-646
    • Taylor, J.W.1
  • 7
    • 84855999011 scopus 로고    scopus 로고
    • Forecasting time series with complex seasonal patterns using exponential smoothing
    • A. M. D. Livera, R. J. Hyndman, and R. D. Snyder, "Forecasting time series with complex seasonal patterns using exponential smoothing," Journal of the American Statistical Association, vol. 106, no. 496, pp. 1513-1527, 2011.
    • (2011) Journal of the American Statistical Association , vol.106 , Issue.496 , pp. 1513-1527
    • Livera, A.M.D.1    Hyndman, R.J.2    Snyder, R.D.3
  • 8
    • 37449014103 scopus 로고    scopus 로고
    • Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
    • Energy
    • M. Aydinalp-Koksal and V. I. Ugursal, "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, vol. 85, no. 4, pp. 271-296, 2008.
    • (2008) Applied , vol.85 , Issue.4 , pp. 271-296
    • Aydinalp-Koksal, M.1    Ugursal, V.I.2
  • 9
    • 84928795768 scopus 로고    scopus 로고
    • Smart grid and smart building inter-operation using agent-based particle swarm optimization
    • L. Hurtado, P. Nguyen, and W. Kling, "Smart grid and smart building inter-operation using agent-based particle swarm optimization," Sustainable Energy, Grids and Networks, 2015.
    • (2015) Sustainable Energy, Grids and Networks
    • Hurtado, L.1    Nguyen, P.2    Kling, W.3
  • 11
    • 64549099947 scopus 로고    scopus 로고
    • Artificial neural networks in energy applications in buildings
    • S. A. Kalogirou, "Artificial neural networks in energy applications in buildings," International Journal of Low-Carbon Technologies, vol. 1, no. 3, pp. 201-216, 2006.
    • (2006) International Journal of Low-Carbon Technologies , vol.1 , Issue.3 , pp. 201-216
    • Kalogirou, S.A.1
  • 12
    • 75449093272 scopus 로고    scopus 로고
    • Artificial neural networks for energy analysis of office buildings with daylighting
    • S. Wong, K. K. Wan, and T. N. Lam, "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, vol. 87, no. 2, pp. 551-557, 2010.
    • (2010) Applied Energy , vol.87 , Issue.2 , pp. 551-557
    • Wong, S.1    Wan, K.K.2    Lam, T.N.3
  • 13
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • 2009, also published as a book. Now Publishers
    • Y. Bengio, "Learning deep architectures for AI," Foundations and Trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009, also published as a book. Now Publishers, 2009.
    • (2009) Foundations and Trends in Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 14
    • 84897654031 scopus 로고    scopus 로고
    • [Online]
    • "Ecogrid eu project." [Online]. Available: http://www.eu-ecogrid.net/
    • Ecogrid Eu Project
  • 15
    • 79955836081 scopus 로고    scopus 로고
    • Two distributed-state models for generating high-dimensional time series
    • G. W. Taylor, G. E. Hinton, and S. T. Roweis, 'Two distributed-state models for generating high-dimensional time series," Journal of Machine Learning Research, vol. 12, pp. 1025-1068, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 1025-1068
    • Taylor, G.W.1    Hinton, G.E.2    Roweis, S.T.3
  • 18
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D. E. Rumelhart, J. L. McClelland et al., Eds. Cambridge: MIT Press
    • P. Smolensky, "Information processing in dynamical systems: Foundations of harmony theory," in Parallel Distributed Processing: Volume J: Foundations, D. E. Rumelhart, J. L. McClelland et al., Eds. Cambridge: MIT Press, 1987, pp. 194-281.
    • (1987) Parallel Distributed Processing: Volume J: Foundations , pp. 194-281
    • Smolensky, P.1
  • 21
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Aug.
    • G. E. Hinton, "Training Products of Experts by Minimizing Contrastive Divergence," Neural Computation, vol. 14, no. 8, pp. 1771-1800, Aug. 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 24
    • 84986579284 scopus 로고    scopus 로고
    • Signal enhancement as minimization of relevant information loss
    • absI120S.693S
    • B. C. Geiger and G. Kubin, "Signal enhancement as minimization of relevant information loss," CoRR, vol. absI120S.693S, 2012.
    • (2012) CoRR
    • Geiger, B.C.1    Kubin, G.2
  • 25
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, 2006.
    • (2006) Science , vol.313
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 26
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • May
    • c.-c. Chang and c.-J. Lin, "Libsvm: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1-27:27, May 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 27
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • A. Foley, P. Leahy, A. Marvuglia, and E. McKeogh, "Current methods and advances in forecasting of wind power generation," Renewable Energy, vol. 37, no. I, pp. 1-8, 2012.
    • (2012) Renewable Energy , vol.37 , Issue.1 , pp. 1-8
    • Foley, A.1    Leahy, P.2    Marvuglia, A.3    McKeogh, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.