메뉴 건너뛰기




Volumn , Issue , 2015, Pages 163-170

High-dimensional indexing by sparse approximation

Author keywords

Approximate nearest neighbor search; High dimensional indexing; Image indexing; L0 penalty; Sparse coding

Indexed keywords


EID: 84962464740     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2671188.2749371     Document Type: Conference Paper
Times cited : (8)

References (26)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • Nov.
    • M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. on Sig. Proc., 54(11):4311-4322, Nov. 2006.
    • (2006) IEEE Trans. on Sig. Proc. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 37549058056 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • Jan.
    • A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. ACM Commun., 51(1):117-117, Jan. 2008.
    • (2008) ACM Commun. , vol.51 , Issue.1 , pp. 117
    • Andoni, A.1    Indyk, P.2
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Mar.
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Img. Sci., 2(1):183-183, Mar. 2009.
    • (2009) SIAM J. Img. Sci. , vol.2 , Issue.1 , pp. 183
    • Beck, A.1    Teboulle, M.2
  • 5
    • 84898444828 scopus 로고    scopus 로고
    • Near duplicate image detection: Min-hash and tf-idf weighting
    • O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-idf weighting. In BMVC'08, 2008.
    • (2008) BMVC'08
    • Chum, O.1    Philbin, J.2    Zisserman, A.3
  • 6
    • 4544259509 scopus 로고    scopus 로고
    • Locality-sensitive hashing scheme based on p-stable distributions
    • New York, NY, USA, ACM
    • M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In SCG'04, pages 253-262, New York, NY, USA, 2004. ACM.
    • (2004) SCG'04 , pp. 253-262
    • Datar, M.1    Immorlica, N.2    Indyk, P.3    Mirrokni, V.S.4
  • 7
    • 70549112890 scopus 로고    scopus 로고
    • Optimally sparse representation in general (non-orthogonal) dictionaries via l1 minimization
    • D. L. Donoho and M. Elad. Optimally sparse representation in general (non-orthogonal) dictionaries via l1 minimization. In Proc. Natl Acad. Sci., 2002.
    • (2002) Proc. Natl Acad. Sci.
    • Donoho, D.L.1    Elad, M.2
  • 8
    • 0001944742 scopus 로고    scopus 로고
    • Similarity search in high dimensions via hashing
    • San Francisco, CA, USA, Morgan Kaufmann Publishers Inc
    • A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB'99, VLDB'99, pages 518-529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.
    • (1999) VLDB'99, VLDB'99 , pp. 518-529
    • Gionis, A.1    Indyk, P.2    Motwani, R.3
  • 10
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 11
    • 56749104169 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • Berlin, Heidelberg
    • H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In ECCV'08, ECCV'08, pages 304-317, Berlin, Heidelberg, 2008.
    • (2008) ECCV'08, ECCV'08 , pp. 304-317
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 13
    • 84867598685 scopus 로고    scopus 로고
    • Anti-sparse coding for approximate nearest neighbor search
    • H. Jégou, T. Furon, and J.-J. Fuchs. Anti-sparse coding for approximate nearest neighbor search. In ICASSP'12, pages 2029-2032, 2012.
    • (2012) ICASSP'12 , pp. 2029-2032
    • Jégou, H.1    Furon, T.2    Fuchs, J.-J.3
  • 17
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • May
    • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vision, 42:145-175, May 2001.
    • (2001) Int. J. Comput. Vision , vol.42 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 19
    • 79954525255 scopus 로고    scopus 로고
    • Locality-sensitive binary codes from shift-invariant kernels
    • M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-invariant kernels. In NIPS, pages 1509-1517, 2009.
    • (2009) NIPS , pp. 1509-1517
    • Raginsky, M.1    Lazebnik, S.2
  • 20
    • 80052280544 scopus 로고    scopus 로고
    • Balancing clusters to reduce response time variability in large scale image search
    • Madrid, Spain, June
    • R. Tavenard, H. Jégou, and L. Amsaleg. Balancing clusters to reduce response time variability in large scale image search. In CBMI'11, Madrid, Spain, June 2011.
    • (2011) CBMI'11
    • Tavenard, R.1    Jégou, H.2    Amsaleg, L.3
  • 21
    • 84884553761 scopus 로고    scopus 로고
    • Msidx: Multi-sort indexing for efficient content-based image search and retrieval
    • Oct.
    • E. Tiakas, D. Rafailidis, A. Dimou, and P. Daras. Msidx: Multi-sort indexing for efficient content-based image search and retrieval. Multimedia, IEEE Transactions on, 15(6):1415-1415, Oct. 2013.
    • (2013) Multimedia, IEEE Transactions on , vol.15 , Issue.6 , pp. 1415
    • Tiakas, E.1    Rafailidis, D.2    Dimou, A.3    Daras, P.4
  • 22
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • Nov.
    • A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE Trans on PAMI'08, 30(11):1958-1958, Nov. 2008.
    • (2008) IEEE Trans on PAMI'08 , vol.30 , Issue.11 , pp. 1958
    • Torralba, A.1    Fergus, R.2    Freeman, W.3
  • 24
    • 0000681228 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
    • San Francisco, CA, USA, Morgan Kaufmann Publishers Inc
    • R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In VLDB'98, pages 194-205, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.
    • (1998) VLDB'98 , pp. 194-205
    • Weber, R.1    Schek, H.-J.2    Blott, S.3
  • 25


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.