메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2764-2772

D3: Deep Dual-Domain Based Fast Restoration of JPEG-Compressed Images

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; PATTERN RECOGNITION; RESTORATION;

EID: 84986267163     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.302     Document Type: Conference Paper
Times cited : (251)

References (37)
  • 1
    • 85009928603 scopus 로고    scopus 로고
    • https://en.wikipedia.org/wiki/Frame rate/.
  • 2
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. TSP, 54(11):4311-4322, 2006.
    • (2006) TSP , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 3
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898-916, 2011.
    • (2011) TPAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 4
    • 84919877634 scopus 로고    scopus 로고
    • Review of proposed high efficiency video coding (hevc) standard
    • E. A. Ayele and S. Dhok. Review of proposed high efficiency video coding (hevc) standard. International Journal of Computer Applications, 59(15):1-9, 2012.
    • (2012) International Journal of Computer Applications , vol.59 , Issue.15 , pp. 1-9
    • Ayele, E.A.1    Dhok, S.2
  • 6
    • 84865278612 scopus 로고    scopus 로고
    • A total variation-based jpeg decompression model
    • K. Bredies and M. Holler. A total variation-based jpeg decompression model. SIAM Journal on Imaging Sciences, 5(1):366-393, 2012.
    • (2012) SIAM Journal on Imaging Sciences , vol.5 , Issue.1 , pp. 366-393
    • Bredies, K.1    Holler, M.2
  • 7
    • 84893398483 scopus 로고    scopus 로고
    • Reducing artifacts in jpeg decompression via a learned dictionary
    • H. Chang, M. K. Ng, and T. Zeng. Reducing artifacts in jpeg decompression via a learned dictionary. TSP, 2014.
    • (2014) TSP
    • Chang, H.1    Ng, M.K.2    Zeng, T.3
  • 8
    • 84898795109 scopus 로고    scopus 로고
    • A learningbased approach to reduce jpeg artifacts in image matting
    • IEEE
    • I. Choi, S. Kim, M. S. Brown, and Y.-W. Tai. A learningbased approach to reduce jpeg artifacts in image matting. In ICCV, pages 2880-2887. IEEE, 2013.
    • (2013) ICCV , pp. 2880-2887
    • Choi, I.1    Kim, S.2    Brown, M.S.3    Tai, Y.-W.4
  • 9
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-d transform-domain collaborative filtering
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. TIP, 16(8):2080-2095, 2007.
    • (2007) TIP , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 11
    • 84973866806 scopus 로고    scopus 로고
    • Compression artifacts reduction by a deep convolutional network
    • C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression artifacts reduction by a deep convolutional network. ICCV, 2015.
    • (2015) ICCV
    • Dong, C.1    Deng, Y.2    Loy, C.C.3    Tang, X.4
  • 12
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • Springer
    • C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV, pages 184-199. Springer, 2014.
    • (2014) ECCV , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 13
    • 84863076804 scopus 로고    scopus 로고
    • Pointwise shapeadaptive dct for high-quality denoising and deblocking of grayscale and color images
    • A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shapeadaptive dct for high-quality denoising and deblocking of grayscale and color images. TIP, 2007.
    • (2007) TIP
    • Foi, A.1    Katkovnik, V.2    Egiazarian, K.3
  • 14
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In ICML, pages 399-406, 2010.
    • (2010) ICML , pp. 399-406
    • Gregor, K.1    LeCun, Y.2
  • 15
    • 84937873657 scopus 로고    scopus 로고
    • Projective dictionary pair learning for pattern classification
    • S. Gu, L. Zhang, W. Zuo, and X. Feng. Projective dictionary pair learning for pattern classification. In NIPS, pages 793-801, 2014.
    • (2014) NIPS , pp. 793-801
    • Gu, S.1    Zhang, L.2    Zuo, W.3    Feng, X.4
  • 16
    • 84959197642 scopus 로고    scopus 로고
    • Convolutional neural networks at constrained time cost
    • K. He and J. Sun. Convolutional neural networks at constrained time cost. In CVPR, 2015.
    • (2015) CVPR
    • He, K.1    Sun, J.2
  • 18
    • 84867892259 scopus 로고    scopus 로고
    • Loss-specific training of non-parametric image restoration models: A new state of the art
    • Springer
    • J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric image restoration models: A new state of the art. In ECCV, pages 112-125. Springer, 2012.
    • (2012) ECCV , pp. 112-125
    • Jancsary, J.1    Nowozin, S.2    Rother, C.3
  • 20
    • 79251469431 scopus 로고    scopus 로고
    • Tackling box-constrained optimization via a new projected quasi-Newton approach
    • D. Kim, S. Sra, and I. S. Dhillon. Tackling box-constrained optimization via a new projected quasi-newton approach. SIAM Journal on Scientific Computing, 2010.
    • (2010) SIAM Journal on Scientific Computing
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 22
    • 11844301577 scopus 로고    scopus 로고
    • Regression-based prediction for blocking artifact reduction in jpeg-compressed images
    • K. Lee, D. S. Kim, and T. Kim. Regression-based prediction for blocking artifact reduction in jpeg-compressed images. TIP, 14(1):36-48, 2005.
    • (2005) TIP , vol.14 , Issue.1 , pp. 36-48
    • Lee, K.1    Kim, D.S.2    Kim, T.3
  • 23
    • 84956611473 scopus 로고    scopus 로고
    • Inter-block soft decoding of jpeg images with sparsity and graph-signal smoothness priors
    • IEEE
    • X. Liu, G. Cheung, X. Wu, and D. Zhao. Inter-block soft decoding of jpeg images with sparsity and graph-signal smoothness priors. In ICIP. IEEE, 2015.
    • (2015) ICIP
    • Liu, X.1    Cheung, G.2    Wu, X.3    Zhao, D.4
  • 24
    • 84959201287 scopus 로고    scopus 로고
    • Data-driven sparsity-based restoration of jpeg-compressed images in dual transform-pixel domain
    • X. Liu, X. Wu, J. Zhou, and D. Zhao. Data-driven sparsity-based restoration of jpeg-compressed images in dual transform-pixel domain. In CVPR, 2015.
    • (2015) CVPR
    • Liu, X.1    Wu, X.2    Zhou, J.3    Zhao, D.4
  • 26
    • 85009878329 scopus 로고    scopus 로고
    • Efficient regression priors for reducing image compression artifacts
    • R. Rothe, R. Timofte, and L. Van Gool. Efficient regression priors for reducing image compression artifacts. In IEEE ICIP, 2015.
    • (2015) IEEE ICIP
    • Rothe, R.1    Timofte, R.2    Van Gool, L.3
  • 28
    • 0033331543 scopus 로고    scopus 로고
    • Real-time compression artifact reduction via robust nonlinear filtering
    • IEEE
    • M.-Y. Shen and C.-C. Jay Kuo. Real-time compression artifact reduction via robust nonlinear filtering. In ICIP, volume 2, pages 565-569. IEEE, 1999.
    • (1999) ICIP , vol.2 , pp. 565-569
    • Shen, M.-Y.1    Jay Kuo, C.-C.2
  • 29
    • 84939228352 scopus 로고    scopus 로고
    • Learning efficient sparse and low rank models
    • P. Sprechmann, A. Bronstein, and G. Sapiro. Learning efficient sparse and low rank models. TPAMI, 2015.
    • (2015) TPAMI
    • Sprechmann, P.1    Bronstein, A.2    Sapiro, G.3
  • 31
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15(1):1929-1958, 2014.
    • (2014) JMLR , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 32
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. TIP, 13(4):600-612, 2004.
    • (2004) TIP , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 33
    • 84991596493 scopus 로고    scopus 로고
    • Learning a task-specific deep architecture for clustering
    • Z. Wang, S. Chang, J. Zhou, M. Wang, and T. S. Huang. Learning a task-specific deep architecture for clustering. SDM, 2016.
    • (2016) SDM
    • Wang, Z.1    Chang, S.2    Zhou, J.3    Wang, M.4    Huang, T.S.5
  • 35
    • 84973897612 scopus 로고    scopus 로고
    • Deep networks for image super-resolution with sparse prior
    • Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. ICCV, 2015.
    • (2015) ICCV
    • Wang, Z.1    Liu, D.2    Yang, J.3    Han, W.4    Huang, T.5
  • 37
    • 79551528467 scopus 로고    scopus 로고
    • Quality assessment of deblocked images
    • C. Yim and A. C. Bovik. Quality assessment of deblocked images. TIP, 20(1):88-98, 2011.
    • (2011) TIP , vol.20 , Issue.1 , pp. 88-98
    • Yim, C.1    Bovik, A.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.