-
1
-
-
84892156829
-
Electrochemistry: Metal-free energy storage
-
G. L. Soloveichik, Electrochemistry: Metal-free energy storage. Nature 505, 163-165 (2014).
-
(2014)
Nature
, vol.505
, pp. 163-165
-
-
Soloveichik, G.L.1
-
2
-
-
81555207951
-
Electrical energy storage for the grid: A battery of choices
-
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices. Science 334, 928-935 (2011).
-
(2011)
Science
, vol.334
, pp. 928-935
-
-
Dunn, B.1
Kamath, H.2
Tarascon, J.-M.3
-
3
-
-
84923878615
-
Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery
-
B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu, V. Sprenkle, W. Wang, Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 6303
-
-
Li, B.1
Nie, Z.2
Vijayakumar, M.3
Li, G.4
Liu, J.5
Sprenkle, V.6
Wang, W.7
-
4
-
-
79955898882
-
Electrochemical energy storage for green grid
-
Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577-3613 (2011).
-
(2011)
Chem. Rev.
, vol.111
, pp. 3577-3613
-
-
Yang, Z.1
Zhang, J.2
Kintner-Meyer, M.C.W.3
Lu, X.4
Choi, D.5
Lemmon, J.P.6
Liu, J.7
-
5
-
-
84928803185
-
Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and longterm cycling
-
C. Chen, Y.Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y.Huang, Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and longterm cycling. Nat. Commun. 6, 6929 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 6929
-
-
Chen, C.1
Wen, Y.2
Hu, X.3
Ji, X.4
Yan, M.5
Mai, L.6
Hu, P.7
Shan, B.8
Huang, Y.9
-
6
-
-
84908143439
-
Lithium-antimony-lead liquid metal battery for grid-level energy storage
-
K. Wang, K. Jiang, B. Chung, T. Ouchi, P. J. Burke, D. A. Boysen, D. J. Bradwell, H. Kim, U. Muecke, D. R. Sadoway, Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature 514, 348-350 (2014).
-
(2014)
Nature
, vol.514
, pp. 348-350
-
-
Wang, K.1
Jiang, K.2
Chung, B.3
Ouchi, T.4
Burke, P.J.5
Boysen, D.A.6
Bradwell, D.J.7
Kim, H.8
Muecke, U.9
Sadoway, D.R.10
-
7
-
-
84892147016
-
A metal-free organic-inorganic aqueous flow battery
-
B. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R. Gerhardt, C. J. Galvin, X. Chen, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, A metal-free organic-inorganic aqueous flow battery. Nature 505, 195-198 (2014).
-
(2014)
Nature
, vol.505
, pp. 195-198
-
-
Huskinson, B.1
Marshak, M.P.2
Suh, C.3
Er, S.4
Gerhardt, M.R.5
Galvin, C.J.6
Chen, X.7
Aspuru-Guzik, A.8
Gordon, R.G.9
Aziz, M.J.10
-
8
-
-
7544234502
-
What are batteries, fuel cells, and supercapacitors?
-
M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245-4270 (2004).
-
(2004)
Chem. Rev.
, vol.104
, pp. 4245-4270
-
-
Winter, M.1
Brodd, R.J.2
-
9
-
-
38949102073
-
Building better batteries
-
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652-657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.-M.2
-
10
-
-
84878740354
-
High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode
-
Y. Zhao, L. Wang, H. R. Byon, High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4, 1896 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1896
-
-
Zhao, Y.1
Wang, L.2
Byon, H.R.3
-
11
-
-
84922863571
-
An aqueous lithium-iodine battery with solid polymer electrolyte-coated metallic lithium anode
-
Y. Zhao, N. B. Mercier, H. R. Byon, An aqueous lithium-iodine battery with solid polymer electrolyte-coated metallic lithium anode. ChemPlusChem 80, 344-348 (2015).
-
(2015)
ChemPlusChem
, vol.80
, pp. 344-348
-
-
Zhao, Y.1
Mercier, N.B.2
Byon, H.R.3
-
12
-
-
84894142875
-
A 3.5 v lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector
-
Y. Zhao, M. Hong, N. Bonnet Mercier, G. Yu, H. C. Choi, H. R. Byon, A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano Lett. 14, 1085-1092 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 1085-1092
-
-
Zhao, Y.1
Hong, M.2
Bonnet Mercier, N.3
Yu, G.4
Choi, H.C.5
Byon, H.R.6
-
13
-
-
84890115574
-
High-performance lithium-iodine flow battery
-
Y. Zhao, H. R. Byon, High-performance lithium-iodine flow battery. Adv. Energy Mater. 3, 1630-1635 (2013).
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 1630-1635
-
-
Zhao, Y.1
Byon, H.R.2
-
14
-
-
84916596410
-
Aqueous rechargeable Li and Na ion batteries
-
H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788-11827 (2014).
-
(2014)
Chem. Rev.
, vol.114
, pp. 11788-11827
-
-
Kim, H.1
Hong, J.2
Park, K.-Y.3
Kim, H.4
Kim, S.-W.5
Kang, K.6
-
15
-
-
84867295154
-
Recent progress in aqueous lithium-ion batteries
-
Y. Wang, J. Yi, Y. Xia, Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2, 830-840 (2012).
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 830-840
-
-
Wang, Y.1
Yi, J.2
Xia, Y.3
-
16
-
-
77956050828
-
Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte
-
J.-Y. Luo, W.-J. Cui, P. He, Y.-Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760-765 (2010).
-
(2010)
Nat. Chem.
, vol.2
, pp. 760-765
-
-
Luo, J.-Y.1
Cui, W.-J.2
He, P.3
Xia, Y.-Y.4
-
17
-
-
84876697105
-
Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system
-
Z. Li, D. Young, K. Xiang, W. C. Carter, Y.-M. Chiang, Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290-294 (2013).
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 290-294
-
-
Li, Z.1
Young, D.2
Xiang, K.3
Carter, W.C.4
Chiang, Y.-M.5
-
18
-
-
84925808777
-
Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries
-
Y. Wang, J. Liu, B. Lee, R. Qiao, Z. Yang, S. Xu, X. Yu, L. Gu, Y.-S. Hu, W. Yang, K. Kang, H. Li, X.-Q. Yang, L. Chen, X. Huang, Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 6401
-
-
Wang, Y.1
Liu, J.2
Lee, B.3
Qiao, R.4
Yang, Z.5
Xu, S.6
Yu, X.7
Gu, L.8
Hu, Y.-S.9
Yang, W.10
Kang, K.11
Li, H.12
Yang, X.-Q.13
Chen, L.14
Huang, X.15
-
19
-
-
84869420954
-
A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
-
M. Pasta, C. D. Wessells, R. A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012).
-
(2012)
Nat. Commun.
, vol.3
, pp. 1149
-
-
Pasta, M.1
Wessells, C.D.2
Huggins, R.A.3
Cui, Y.4
-
20
-
-
84899943202
-
Full open-framework batteries for stationary energy storage
-
M. Pasta, C. D. Wessells, N. Liu, J. Nelson, M. T. McDowell, R. A. Huggins, M. F. Toney, Y. Cui, Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 3007
-
-
Pasta, M.1
Wessells, C.D.2
Liu, N.3
Nelson, J.4
McDowell, M.T.5
Huggins, R.A.6
Toney, M.F.7
Cui, Y.8
-
21
-
-
84896270138
-
Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry
-
X.-Y. Wu, M.-Y. Sun, Y.-F. Shen, J.-F. Qian, Y.-L. Cao, X.-P. Ai, H.-X. Yang, Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 7, 407-411 (2014).
-
(2014)
ChemSusChem
, vol.7
, pp. 407-411
-
-
Wu, X.-Y.1
Sun, M.-Y.2
Shen, Y.-F.3
Qian, J.-F.4
Cao, Y.-L.5
Ai, X.-P.6
Yang, H.-X.7
-
22
-
-
33846112234
-
An aqueous rechargeable lithium battery with good cycling performance
-
G. Wang, L. Fu, N. Zhao, L. Yang, Y. Wu, H. Wu, An aqueous rechargeable lithium battery with good cycling performance. Angew. Chem. Int. Ed. 46, 295-297 (2007).
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 295-297
-
-
Wang, G.1
Fu, L.2
Zhao, N.3
Yang, L.4
Wu, Y.5
Wu, H.6
-
23
-
-
84888164577
-
Aqueous rechargeable alkali-ion batteries with polyimide anode
-
H. Qin, Z. P. Song, H. Zhan, Y. H. Zhou, Aqueous rechargeable alkali-ion batteries with polyimide anode. J. Power Sources 249, 367-372 (2014).
-
(2014)
J. Power Sources
, vol.249
, pp. 367-372
-
-
Qin, H.1
Song, Z.P.2
Zhan, H.3
Zhou, Y.H.4
-
24
-
-
84902455418
-
Polyimide as anode electrode material for rechargeable sodium batteries
-
L. Chen, W. Li, Y. Wang, C. Wang, Y. Xia, Polyimide as anode electrode material for rechargeable sodium batteries. RSC Adv. 4, 25369-25373 (2014).
-
(2014)
RSC Adv.
, vol.4
, pp. 25369-25373
-
-
Chen, L.1
Li, W.2
Wang, Y.3
Wang, C.4
Xia, Y.5
-
25
-
-
84919773056
-
Naphthalene diimide based materials with adjustable redox potentials: Evaluation for organic lithium-ion batteries
-
G. S. Vadehra, R. P. Maloney, M. A. Garcia-Garibay, B. Dunn, Naphthalene diimide based materials with adjustable redox potentials: Evaluation for organic lithium-ion batteries. Chem. Mater. 26, 7151-7157 (2014).
-
(2014)
Chem. Mater.
, vol.26
, pp. 7151-7157
-
-
Vadehra, G.S.1
Maloney, R.P.2
Garcia-Garibay, M.A.3
Dunn, B.4
-
26
-
-
84925849560
-
An organic pigment as a high-performance cathode for sodium-ion batteries
-
W. Luo, M. Allen, V. Raju, X. Ji, An organic pigment as a high-performance cathode for sodium-ion batteries. Adv. Energy Mater. 4, 1400554 (2014).
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1400554
-
-
Luo, W.1
Allen, M.2
Raju, V.3
Ji, X.4
-
27
-
-
78149447077
-
Polyimides: Promising energy-storage materials
-
Z. Song, H. Zhan, Y. Zhou, Polyimides: Promising energy-storage materials. Angew. Chem. Int. Ed. 49, 8444-8448 (2010).
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 8444-8448
-
-
Song, Z.1
Zhan, H.2
Zhou, Y.3
-
28
-
-
84903362570
-
Where do batteries end and supercapacitors begin?
-
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210-1211 (2014).
-
(2014)
Science
, vol.343
, pp. 1210-1211
-
-
Simon, P.1
Gogotsi, Y.2
Dunn, B.3
-
29
-
-
75749124968
-
Ordered mesoporous a-MoO3 with isooriented nanocrystalline walls for thin-film pseudocapacitors
-
T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Ordered mesoporous a-MoO3 with isooriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146-151 (2010).
-
(2010)
Nat. Mater.
, vol.9
, pp. 146-151
-
-
Brezesinski, T.1
Wang, J.2
Tolbert, S.H.3
Dunn, B.4
-
30
-
-
84878250625
-
High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
-
V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518-522 (2013).
-
(2013)
Nat. Mater.
, vol.12
, pp. 518-522
-
-
Augustyn, V.1
Come, J.2
Lowe, M.A.3
Kim, J.W.4
Taberna, P.-L.5
Tolbert, S.H.6
Abruña, H.D.7
Simon, P.8
Dunn, B.9
-
31
-
-
84871293257
-
Layered H2Ti6O13-nanowires: A new promising pseudocapacitive material in non-aqueous electrolyte
-
Y. Wang, Z. Hong, M. Wei, Y. Xia, Layered H2Ti6O13-nanowires: A new promising pseudocapacitive material in non-aqueous electrolyte. Adv. Funct. Mater. 22, 5185-5193 (2012).
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 5185-5193
-
-
Wang, Y.1
Hong, Z.2
Wei, M.3
Xia, Y.4
-
32
-
-
84940055179
-
Aqueous lithium-ion batteries using O2 self-elimination polyimides electrodes
-
L. Chen, W. Li, Z. Guo, Y. Wang, C. Wang, Y. Che, Y. Xia, Aqueous lithium-ion batteries using O2 self-elimination polyimides electrodes. J. Electrochem. Soc. 162, A1972-A1977 (2015).
-
(2015)
J. Electrochem. Soc.
, vol.162
, pp. A1972-A1977
-
-
Chen, L.1
Li, W.2
Guo, Z.3
Wang, Y.4
Wang, C.5
Che, Y.6
Xia, Y.7
-
33
-
-
84900520976
-
Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries
-
H.-g. Wang, S. Yuan, D.-l. Ma, X.-l. Huang, F.-l. Meng, X.-b. Zhang, Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries. Adv. Energy Mater. 4, 1301651 (2014).
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1301651
-
-
Wang, H.-G.1
Yuan, S.2
Ma, D.-L.3
Huang, X.-L.4
Meng, F.-L.5
Zhang, X.-B.6
-
34
-
-
84906782573
-
An aqueous sodium ion hybrid battery incorporating an organic compound and a Prussian blue derivative
-
D. J. Kim, Y. H. Jung, K. K. Bharathi, S. H. Je, D. K. Kim, A. Coskun, J. W. Choi, An aqueous sodium ion hybrid battery incorporating an organic compound and a Prussian blue derivative. Adv. Energy Mater. 4, 1400133 (2014).
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1400133
-
-
Kim, D.J.1
Jung, Y.H.2
Bharathi, K.K.3
Je, S.H.4
Kim, D.K.5
Coskun, A.6
Choi, J.W.7
-
35
-
-
84901498841
-
Flexible and binder-free organic cathode for high-performance lithium-ion batteries
-
H. Wu, S. A. Shevlin, Q. Meng,W. Guo, Y. Meng, K. Lu, Z. Wei, Z. Guo, Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv. Mater. 26, 3338-3343 (2014).
-
(2014)
Adv. Mater.
, vol.26
, pp. 3338-3343
-
-
Wu, H.1
Shevlin, S.A.2
Meng, Q.3
Guo, W.4
Meng, Y.5
Lu, K.6
Wei, Z.7
Guo, Z.8
|