-
1
-
-
84883178689
-
Finite difference methods for mean field games, in Hamilton-Jacobi Equations: Approximations
-
P. Loreti and N. A. Tchou, eds., Lecture Notes in Math. 2074, Springer, Heidelberg
-
Y. ACHDOU, Finite difference methods for mean field games, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, P. Loreti and N. A. Tchou, eds., Lecture Notes in Math. 2074, Springer, Heidelberg, 2013, pp. 1-47, doi:10.1007/978-3-642-36433-4.
-
(2013)
Numerical Analysis and Applications
, pp. 1-47
-
-
Achdou, Y.1
-
3
-
-
0003981935
-
-
John Wiley & Sons, Chichester, UK, Gauthier-Villars, Montrouge
-
A. BENSOUSSAN, Perturbation Methods in Optimal Control, John Wiley & Sons, Chichester, UK, Gauthier-Villars, Montrouge, 1988.
-
(1988)
Perturbation Methods in Optimal Control
-
-
Bensoussan, A.1
-
4
-
-
4243173402
-
On Bellman equation of ergodic type with quadratic growth Hamiltonians
-
L. Cesari, ed., Pitman Res. Notes Math. Ser. 148, Longman, Harlow, UK
-
A. BENSOUSSAN AND J. FREHSE, On Bellman equation of ergodic type with quadratic growth Hamiltonians, in Contributions to Modern Calculus of Variations, L. Cesari, ed., Pitman Res. Notes Math. Ser. 148, Longman, Harlow, UK, 1987, pp. 13-25.
-
(1987)
Contributions to Modern Calculus of Variations
, pp. 13-25
-
-
Bensoussan, A.1
Frehse, J.2
-
5
-
-
85088964125
-
-
Springer Briefs in Mathematics, Springer, New York
-
A. BENSOUSSAN, J. FREHSE, AND P. YAM, Mean Field Games and Mean Field Type Control Theory, Springer Briefs in Mathematics, Springer, New York, 2013, doi:10.1007/978-1-4614-8508-7.
-
(2013)
Mean Field Games and Mean Field Type Control Theory
-
-
Bensoussan, A.1
Frehse, J.2
Yam, P.3
-
6
-
-
84873329105
-
-
2nd ed., AMS Chelsea, Providence, RI
-
A. BENSOUSSAN, J.-L. LIONS, AND G. PAPANICOLAOU, Asymptotic Analysis for Periodic Structures, 2nd ed., AMS Chelsea, Providence, RI, 2011.
-
(2011)
Asymptotic Analysis for Periodic Structures
-
-
Bensoussan, A.1
Lions, J.-L.2
Papanicolaou, G.3
-
7
-
-
84902192859
-
Mean field games with nonlinear mobilities in pedestrian dynamics
-
M. BURGER, M. DI FRANCESCO, P. MARKOWICH, AND M.-T. WOLFRAM, Mean field games with nonlinear mobilities in pedestrian dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19(2014), pp. 1311-1333, doi:10.3934/dcdsb.2014.19.1311.
-
(2014)
Discrete Contin. Dyn. Syst. Ser. B
, vol.19
, pp. 1311-1333
-
-
Burger, M.1
Di Francesco, M.2
Markowich, P.3
Wolfram, M.-T.4
-
8
-
-
84964879680
-
Stationary mean field games systems defined on networks
-
F. CAMILLI AND C. MARCHI, Stationary mean field games systems defined on networks, SIAM J. Control Optim., 54(2016), pp. 1085-1103, doi:10.1137/15M1022082.
-
(2016)
SIAM J. Control Optim.
, vol.54
, pp. 1085-1103
-
-
Camilli, F.1
Marchi, C.2
-
9
-
-
84955157826
-
Weak solutions for first order mean field games with local coupling
-
Springer INdAM Ser. 11, Springer, Cham
-
P. CARDALIAGUET, Weak solutions for first order mean field games with local coupling, in Analysis and Geometry in Control Theory and Its Applications, Springer INdAM Ser. 11, Springer, Cham, 2015, pp. 111-158, doi:10.1007/978-3-319-06917-3.
-
(2015)
Analysis and Geometry in Control Theory and its Applications
, pp. 111-158
-
-
Cardaliaguet, P.1
-
10
-
-
85068762191
-
-
technical report
-
P. CARDALIAGUET, Note on Mean Field Games, technical report, available online at https://www.ceremade.dauphine.fr/?cardalia/MFG20130420.pdf.
-
Note on Mean Field Games
-
-
Cardaliaguet, P.1
-
12
-
-
85072069003
-
-
arXiv:1509.02505 math. AP
-
P. CARDALIAGUET, F. DELARUE, J.-M. LASRY, AND P.-L. LIONS, The Master Equation and the Convergence Problem in Mean Field Games, preprint, arXiv:1509.02505 [math. AP], 2015.
-
(2015)
The Master Equation and the Convergence Problem in Mean Field Games
-
-
Cardaliaguet, P.1
Delarue, F.2
Lasry, J.-M.3
Lions, P.-L.4
-
13
-
-
84865574440
-
Long time average of mean field games
-
P. CARDALIAGUET, J.-M. LASRY, P.-L. LIONS, AND A. PORRETTA, Long time average of mean field games, Netw. Heterog. Media, 7(2012), pp. 279-301, doi:10.3934/nhm.2012.7.279.
-
(2012)
Netw. Heterog. Media
, vol.7
, pp. 279-301
-
-
Cardaliaguet, P.1
Lasry, J.-M.2
Lions, P.-L.3
Porretta, A.4
-
14
-
-
84890470397
-
Long time average of mean field games with a nonlocal coupling
-
P. CARDALIAGUET, J.-M. LASRY, P.-L. LIONS, AND A. PORRETTA, Long time average of mean field games with a nonlocal coupling, SIAM J. Control Optim., 51(2013), pp. 3558-3591, doi:10.1137/120904184.
-
(2013)
SIAM J. Control Optim.
, vol.51
, pp. 3558-3591
-
-
Cardaliaguet, P.1
Lasry, J.-M.2
Lions, P.-L.3
Porretta, A.4
-
15
-
-
84940920550
-
A micro-macro traffic model based on mean-field games
-
Chicago, IL
-
G. CHEVALIER, J. LE NY, AND R. MALHAM, A micro-macro traffic model based on mean-field games, in 2015 American Control Conference (ACC), Chicago, IL, 2015, pp. 1983-1988, doi:10.1109/ACC.2015.7171024.
-
(2015)
2015 American Control Conference (ACC)
, pp. 1983-1988
-
-
Chevalier, G.1
Le Ny, J.2
Malham, R.3
-
16
-
-
84979000025
-
Stationary focusing mean field games
-
M. CIRANT, Stationary focusing mean field games, Comm. Partial Differential Equations, 41(2016), pp. 1324-1346, doi:10.1080/03605302.2016.1192647.
-
(2016)
Comm. Partial Differential Equations
, vol.41
, pp. 1324-1346
-
-
Cirant, M.1
-
18
-
-
84964901065
-
-
IMPA Mathematical Publications, Rio de Janeiro, Brazil
-
D. A. GOMES, L. NURBEKYAN, AND E. PIMENTEL, Economic Models and Mean-Field Games Theory, IMPA Mathematical Publications, Rio de Janeiro, Brazil, 2015.
-
(2015)
Economic Models and Mean-field Games Theory
-
-
Gomes, D.A.1
Nurbekyan, L.2
Pimentel, E.3
-
19
-
-
84964380514
-
Time-dependent mean-field games in the superquadratic case
-
D. A. GOMES, E. PIMENTEL, AND H. SÁNCHEZ-MORGADO, Time-dependent mean-field games in the superquadratic case, ESAIM Control Optim. Calc. Var., 22(2016), pp. 562-580, doi:10.1051/cocv/2015029.
-
(2016)
ESAIM Control Optim. Calc. Var.
, vol.22
, pp. 562-580
-
-
Gomes, D.A.1
Pimentel, E.2
Sánchez-Morgado, H.3
-
20
-
-
84865604666
-
A-priori estimates for stationary mean-field games
-
D. A. GOMES, G. E. PIRES, AND H. SÁNCHEZ-MORGADO, A-priori estimates for stationary mean-field games, Netw. Heterog. Media, 7(2012), pp. 303-314, doi:10.3934/nhm.2012.7.303.
-
(2012)
Netw. Heterog. Media
, vol.7
, pp. 303-314
-
-
Gomes, D.A.1
Pires, G.E.2
Sánchez-Morgado, H.3
-
21
-
-
84899464039
-
Mean field games models-a brief survey
-
D. A. GOMES AND J. SÁUDE, Mean field games models-a brief survey, Dyn. Games Appl., 4(2014), pp. 110-154, doi:10.1007/s13235-013-0099-2.
-
(2014)
Dyn. Games Appl.
, vol.4
, pp. 110-154
-
-
Gomes, D.A.1
Sáude, J.2
-
22
-
-
80455173864
-
On a mean field game approach modeling congestion and aversion in pedestrian crowds
-
A. LACHAPELLE AND M.-T. WOLFRAM, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Transportation Res. Part B Methodological, 45(2011), pp. 1572-1589, doi:10.1016/j.trb.2011.07.011.
-
(2011)
Transportation Res. Part B Methodological
, vol.45
, pp. 1572-1589
-
-
Lachapelle, A.1
Wolfram, M.-T.2
-
23
-
-
84936864615
-
A general characterization of the mean field limit for stochastic differential games
-
D. LACKER, A general characterization of the mean field limit for stochastic differential games, Probab. Theory Related Fields, 165(2016), pp. 581-648, doi:10.1007/s00440-015-0641-9.
-
(2016)
Probab. Theory Related Fields
, vol.165
, pp. 581-648
-
-
Lacker, D.1
-
24
-
-
33750627999
-
Jeux à champ moyen. I. Le cas stationnaire
-
J.-M. LASRY AND P.-L. LIONS, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343(2006), pp. 619-625, doi:10.1016/j.crma.2006.09.019.
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, pp. 619-625
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
25
-
-
33751077273
-
Jeux à champ moyen. II. Horizon fini et contrôle optimal
-
J.-M. LASRY AND P.-L. LIONS, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343(2006), pp. 679-684, doi:10.1016/j.crma.2006.09.018.
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, pp. 679-684
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
27
-
-
0035994824
-
On weak convergence of locally periodic functions
-
D. LUKKASSEN AND P. WALL, On weak convergence of locally periodic functions, J. Nonlinear Math. Phys., 9(2002), pp. 42-57, doi:10.2991/jnmp. 2002.9.1.5.
-
(2002)
J. Nonlinear Math. Phys.
, vol.9
, pp. 42-57
-
-
Lukkassen, D.1
Wall, P.2
-
30
-
-
84984973848
-
Regularity theory for second order stationary mean-field games
-
to appear
-
E. PIMENTEL AND V. VOSKANYAN, Regularity theory for second order stationary mean-field games, Indiana Univ. Math. J., to appear.
-
Indiana Univ. Math. J.
-
-
Pimentel, E.1
Voskanyan, V.2
|