-
1
-
-
85044408488
-
Surrogate-based aerodynamic design optimization: Use of surrogates in aerodynamic design optimization
-
M. Ahmed and N. Qin. Surrogate-Based Aerodynamic Design Optimization: Use of Surrogates in Aerodynamic Design Optimization. Aerospace Sciences and Aviation Technology, ASAT-13, 2009.
-
(2009)
Aerospace Sciences and Aviation Technology, ASAT-13
-
-
Ahmed, M.1
Qin, N.2
-
3
-
-
0032760636
-
Reasonable design space approach to response surface approximation
-
V. Balabanov, A. Giunta, O. Golovidov, B. Grossman, H. Mason, T. Watson, and T. Haftkalf. Reasonable design space approach to response surface approximation. Journal of Aircraft, 1999.
-
(1999)
Journal of Aircraft
-
-
Balabanov, V.1
Giunta, A.2
Golovidov, O.3
Grossman, B.4
Mason, H.5
Watson, T.6
Haftkalf, T.7
-
4
-
-
0032755123
-
Framework for multidisciplinary design based on response-surface approximations
-
M. Batill, A. Stelmack, and S. Sellar. Framework for multidisciplinary design based on response-surface approximations. Journal of Aircraft, 1999.
-
(1999)
Journal of Aircraft
-
-
Batill, M.1
Stelmack, A.2
Sellar, S.3
-
7
-
-
34147146626
-
New approaches to conceptual and preliminary aircraft design: A comparative assessment of a neural network formulation and a response surface methodology
-
D. Daberkow and D. N. New Approaches to Conceptual and Preliminary Aircraft Design: A Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology. World Aviation Conference, 1998.
-
(1998)
World Aviation Conference
-
-
Daberkow, D.1
-
8
-
-
84973904859
-
Flownet: Learning optical ow with convolutional networks
-
A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazrba, V. Golkov, P. v. d. Smagt, D. Cremers, and T. Brox. Flownet: Learning optical ow with convolutional networks. In IEEE International Conference on Computer Vision (ICCV), 2015.
-
(2015)
IEEE International Conference on Computer Vision (ICCV)
-
-
Dosovitskiy, A.1
Fischer, P.2
Ilg, E.3
Hausser, P.4
Hazrba, C.5
Golkov, V.6
Smagt P, V.D.7
Cremers, D.8
Brox, T.9
-
10
-
-
23144459061
-
A comparative study of metamodeling methods for multiobjective crashworthiness optimization
-
H. Fang, M. Rais-Rohani, Z. Liu, and M. Horstemeyer. A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Computers & Structures, 2005.
-
(2005)
Computers & Structures
-
-
Fang, H.1
Rais-Rohani, M.2
Liu, Z.3
Horstemeyer, M.4
-
15
-
-
34547187637
-
The OpenLB project: An open source and object oriented implementation of lattice Boltzmann methods
-
V. Heuveline and J. Latt. The OpenLB project: An open source and object oriented implementation of lattice Boltzmann methods. International Journal of Modern Physics, 2007.
-
(2007)
International Journal of Modern Physics
-
-
Heuveline, V.1
Latt, J.2
-
17
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia. 2014.
-
(2014)
Proceedings of the ACM International Conference on Multimedia
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Darrell, T.7
-
19
-
-
1842450482
-
Global approximation and optimization using adjoint computational uid dynamics codes
-
S. J. Leary, A. Bhaskar, and A. J. Keane. Global approximation and optimization using adjoint computational uid dynamics codes. AIAA journal, 2004.
-
(2004)
AIAA Journal
-
-
Leary, S.J.1
Bhaskar, A.2
Keane, A.J.3
-
22
-
-
25744459324
-
Use of the boltzmann equation to simulate lattice-gas automata
-
G. R. McNamara and G. Zanetti. Use of the boltzmann equation to simulate lattice-gas automata. Physical Review Letters, 1988.
-
(1988)
Physical Review Letters
-
-
McNamara, G.R.1
Zanetti, G.2
-
26
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 2015.
-
(2015)
Neural Networks
-
-
Schmidhuber, J.1
-
27
-
-
84877789646
-
Convolutional-recursive deep learning for 3d object classification
-
R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng. Convolutional-recursive deep learning for 3d object classification. In Advances in Neural Information Processing Systems, 2012.
-
(2012)
Advances in Neural Information Processing Systems
-
-
Socher, R.1
Huval, B.2
Bath, B.3
Manning, C.D.4
Ng, A.Y.5
-
28
-
-
84984964891
-
-
arXiv preprint arXiv: 1511. 06681
-
D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Deep end2end voxel2voxel prediction. ArXiv preprint arXiv: 1511. 06681, 2015.
-
(2015)
Deep end2end voxel2voxel Prediction
-
-
Tran, D.1
Bourdev, L.2
Fergus, R.3
Torresani, L.4
Paluri, M.5
-
30
-
-
84905723685
-
Pteromys: Interactive design and optimization of free-formed free-ight model airplanes
-
N. Umetani, Y. Koyama, R. Schmidt, and T. Igarashi. Pteromys: interactive design and optimization of free-formed free-ight model airplanes. ACM Trans. Graph., 2014.
-
(2014)
ACM Trans. Graph.
-
-
Umetani, N.1
Koyama, Y.2
Schmidt, R.3
Igarashi, T.4
|