메뉴 건너뛰기




Volumn 1, Issue 1, 2016, Pages 71-92

Granular meta-clustering based on hierarchical, network, and temporal connections

Author keywords

Financial markets; Fuzzy c means; Granular computing; Iterative clustering; k means; Meta clustering; Social networks; Time series; Web mining

Indexed keywords

CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; COMMERCE; DATA MINING; ELECTRONIC TRADING; FINANCIAL MARKETS; GRANULAR COMPUTING; INFORMATION GRANULES; SEMANTICS; SOCIAL SCIENCES COMPUTING;

EID: 84984980606     PISSN: 23644966     EISSN: 23644974     Source Type: Journal    
DOI: 10.1007/s41066-015-0007-9     Document Type: Article
Times cited : (78)

References (53)
  • 4
    • 11844301005 scopus 로고    scopus 로고
    • Generation of interpretable fuzzy granules by a double-clustering technique
    • Castellano G, Fanelli AM, Mencar C (2002) Generation of interpretable fuzzy granules by a double-clustering technique. Arch Control Sci 12(4):397–410
    • (2002) Arch Control Sci , vol.12 , Issue.4 , pp. 397-410
    • Castellano, G.1    Fanelli, A.M.2    Mencar, C.3
  • 5
    • 34948825456 scopus 로고    scopus 로고
    • A multiview approach for intelligent data analysis based on data operators
    • Chen YH, Yao YY (2008) A multiview approach for intelligent data analysis based on data operators. Inf Sci 178(1):1–20 DOI: 10.1016/j.ins.2007.08.011
    • (2008) Inf Sci , vol.178 , Issue.1 , pp. 1-20
    • Chen, Y.H.1    Yao, Y.Y.2
  • 6
    • 0037892855 scopus 로고    scopus 로고
    • Fuzzy k-means clustering models for triangular fuzzy time trajectories
    • Coppi R, D’Urso P (2002) Fuzzy k-means clustering models for triangular fuzzy time trajectories. Stat Methods Appl 11(1):21–40 DOI: 10.1007/BF02511444
    • (2002) Stat Methods Appl , vol.11 , Issue.1 , pp. 21-40
    • Coppi, R.1    D’Urso, P.2
  • 7
    • 0038006805 scopus 로고    scopus 로고
    • Three-way fuzzy clustering models for lr fuzzy time trajectories
    • Coppi R, D’Urso P (2003) Three-way fuzzy clustering models for lr fuzzy time trajectories. Comput Stat Data Anal 43(2):149–177 DOI: 10.1016/S0167-9473(02)00226-8
    • (2003) Comput Stat Data Anal , vol.43 , Issue.2 , pp. 149-177
    • Coppi, R.1    D’Urso, P.2
  • 8
    • 84856698812 scopus 로고    scopus 로고
    • Fuzzy and possibilistic clustering for fuzzy data
    • Coppi R, D’Urso P, Giordani P (2012) Fuzzy and possibilistic clustering for fuzzy data. Comput Stat Data Anal 56(4):915–927 DOI: 10.1016/j.csda.2010.09.013
    • (2012) Comput Stat Data Anal , vol.56 , Issue.4 , pp. 915-927
    • Coppi, R.1    D’Urso, P.2    Giordani, P.3
  • 10
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Cybernetics 3(3):32–57. doi:10.1080/01969727308546046 DOI: 10.1080/01969727308546046
    • (1973) Cybernetics , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 11
    • 84901659713 scopus 로고    scopus 로고
    • Robust clustering of imprecise data
    • D’Urso P, De Giovanni L (2014) Robust clustering of imprecise data. Chemom Intell Lab Syst 136:58–80 DOI: 10.1016/j.chemolab.2014.05.004
    • (2014) Chemom Intell Lab Syst , vol.136 , pp. 58-80
    • D’Urso, P.1    De Giovanni, L.2
  • 12
    • 84891859160 scopus 로고    scopus 로고
    • Self-organizing maps for imprecise data
    • D’Urso P, De Giovanni L, Massari R (2014) Self-organizing maps for imprecise data. Fuzzy Sets Syst 237:63–89 DOI: 10.1016/j.fss.2013.09.011
    • (2014) Fuzzy Sets Syst , vol.237 , pp. 63-89
    • D’Urso, P.1    De Giovanni, L.2    Massari, R.3
  • 14
    • 84948182065 scopus 로고    scopus 로고
    • Iterative double clustering for unsupervised and semi-supervised learning
    • Springer, Freiburg, Germany
    • El-Yaniv R, Souroujon O (2001) Iterative double clustering for unsupervised and semi-supervised learning. Machine Learning: ECML 2001. Springer, Freiburg, Germany, pp 121–132
    • (2001) Machine Learning: ECML , vol.2001 , pp. 121-132
    • El-Yaniv, R.1    Souroujon, O.2
  • 15
    • 84938808480 scopus 로고    scopus 로고
    • Clustering granular data and their characterization with information granules of higher type
    • Gacek A, Pedrycz W (2015) Clustering granular data and their characterization with information granules of higher type. IEEE Trans Fuzzy Syst 23:850–860. doi:10.1109/TFUZZ.2014.2329707 DOI: 10.1109/TFUZZ.2014.2329707
    • (2015) IEEE Trans Fuzzy Syst , vol.23 , pp. 850-860
    • Gacek, A.1    Pedrycz, W.2
  • 16
    • 85107879587 scopus 로고    scopus 로고
    • From triadic fca to triclustering: Experimental comparison of some triclustering algorithms
    • Gnatyshak DV, Ignatov DI, Kuznetsov SO (2013) From triadic fca to triclustering: Experimental comparison of some triclustering algorithms. CLA 2013:249
    • (2013) CLA , vol.2013 , pp. 249
    • Gnatyshak, D.V.1    Ignatov, D.I.2    Kuznetsov, S.O.3
  • 18
    • 0348096294 scopus 로고    scopus 로고
    • Clustering validity checking methods: part II
    • Halkidi M, Batistakis Y, Vazirgianni M (2002) Clustering validity checking methods: part II. ACM SIGMOD Rec 31:19–27 DOI: 10.1145/601858.601862
    • (2002) ACM SIGMOD Rec , vol.31 , pp. 19-27
    • Halkidi, M.1    Batistakis, Y.2    Vazirgianni, M.3
  • 19
    • 0001138328 scopus 로고
    • Algorithm AS136: a k-means clustering algorithm
    • Hartigan JA, Wong MA (1979) Algorithm AS136: a k-means clustering algorithm. Appl Stat 28:100–108 DOI: 10.2307/2346830
    • (1979) Appl Stat , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 24
    • 84888636535 scopus 로고    scopus 로고
    • Iterative meta-clustering through granular hierarchy of supermarket customers and products
    • Lingras P, Elagamy A, Ammar A, Elouedi Z (2014) Iterative meta-clustering through granular hierarchy of supermarket customers and products. Inf Sci 257:14–31 DOI: 10.1016/j.ins.2013.09.018
    • (2014) Inf Sci , vol.257 , pp. 14-31
    • Lingras, P.1    Elagamy, A.2    Ammar, A.3    Elouedi, Z.4
  • 27
    • 85107848952 scopus 로고    scopus 로고
    • Temporal recursive meta-clustering
    • to be submitted
    • Lingras P, Haider F (2014b) Temporal recursive meta-clustering. Inf Sci (to be submitted)
    • (2014) Inf Sci
    • Lingras, P.1    Haider, F.2
  • 30
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proc Fifth Berkeley Symp Math Stat Probab 1:281–297
    • (1967) Proc Fifth Berkeley Symp Math Stat Probab , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 32
    • 84861189820 scopus 로고    scopus 로고
    • An optimization of allocation of information granularity in the interpretation of data structures: Toward granular fuzzy clustering
    • Pedrycz W, Bargiela A (2012) An optimization of allocation of information granularity in the interpretation of data structures: Toward granular fuzzy clustering. IEEE Trans Syst Man Cybern Part B Cybern 42:582–590. doi:10.1109/TSMCB.2011.2170067 DOI: 10.1109/TSMCB.2011.2170067
    • (2012) IEEE Trans Syst Man Cybern Part B Cybern , vol.42 , pp. 582-590
    • Pedrycz, W.1    Bargiela, A.2
  • 39
    • 80051488571 scopus 로고    scopus 로고
    • Toward a Semantic Granularity Model for Domain specific Information Retrieval
    • Yan X, Lau RYK, Song D, Li X, Ma J (2011) Toward a Semantic Granularity Model for Domain specific Information Retrieval. ACM Trans Inf Syst 29(3):15. doi:10.1145/1993036.1993039 DOI: 10.1145/1993036.1993039
    • (2011) ACM Trans Inf Syst , vol.29 , Issue.3 , pp. 15
    • Yan, X.1    Lau, R.Y.K.2    Song, D.3    Li, X.4    Ma, J.5
  • 42
    • 0344990580 scopus 로고    scopus 로고
    • Wu W, Xiong H, Shekhar S, Clustering and Information Retrieval, Kluwer Academic Publishers, Boston
    • Yao YY (2003b) Granular Computing for the Design of Information Retrieval Support Systems. In: Wu W, Xiong H, Shekhar S (eds) Clustering and Information Retrieval. Kluwer Academic Publishers, Boston, pp 299–329
    • (2003) Granular Computing for the Design of Information Retrieval Support Systems , pp. 299-329
    • Yao, Y.Y.1
  • 45
    • 70349984171 scopus 로고    scopus 로고
    • A unified framework of granular computing
    • Pedrycz W, Skowron A, Kreinovich V, (eds), Wiley, Chichester
    • Yao YY (2008a) A unified framework of granular computing. In: Pedrycz W, Skowron A, Kreinovich V (eds) Handbook of granular computing. Wiley, Chichester, pp 401–410 DOI: 10.1002/9780470724163.ch17
    • (2008) Handbook of granular computing , pp. 401-410
    • Yao, Y.Y.1
  • 48
    • 58149380314 scopus 로고    scopus 로고
    • Integrative levels of granularity
    • Bargiela A, Pedrycz W, (eds), Springer, Berlin
    • Yao YY (2009) Integrative levels of granularity. In: Bargiela A, Pedrycz W (eds) Human-centric information processing through granular modelling. Springer, Berlin, pp 31–47 DOI: 10.1007/978-3-540-92916-1_2
    • (2009) Human-centric information processing through granular modelling , pp. 31-47
    • Yao, Y.Y.1
  • 52
    • 1642469977 scopus 로고    scopus 로고
    • Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • Zadeh LA (1997) Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90:111–127 DOI: 10.1016/S0165-0114(97)00077-8
    • (1997) Fuzzy Sets Syst , vol.90 , pp. 111-127
    • Zadeh, L.A.1
  • 53
    • 0002263693 scopus 로고
    • Fuzzy Sets and Information Granularity
    • Gupta NRR, Yager R, (eds), North-Holland, Amsterdam
    • Zadeh LA (1979) Fuzzy Sets and Information Granularity. In: Gupta NRR, Yager R (eds) Advances in Fuzzy Set Theory and Applications. North-Holland, Amsterdam, pp 3–18
    • (1979) Advances in Fuzzy Set Theory and Applications , pp. 3-18
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.