-
1
-
-
0034615958
-
Monolithic microfabricated valves and pumps by multilayer soft lithography
-
10753110 Apr 07
-
Unger M, Chou H, Thorsen T, Scherer A, Quake S. Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science. 2000 Apr 07; 288(5463): 113-117. PMID: 10753110
-
(2000)
Science
, vol.288
, Issue.5463
, pp. 113-117
-
-
Unger, M.1
Chou, H.2
Thorsen, T.3
Scherer, A.4
Quake, S.5
-
2
-
-
0037131390
-
Microfluidic large-scale integration
-
12351675 Oct 18
-
Thorsen T, Maerkl S, Quake S. Microfluidic Large-Scale Integration. Science. 2002 Oct 18; 298(5593): 580-584. PMID: 12351675
-
(2002)
Science
, vol.298
, Issue.5593
, pp. 580-584
-
-
Thorsen, T.1
Maerkl, S.2
Quake, S.3
-
3
-
-
84875763032
-
The third decade of microfluidics
-
23532273 Mar 27
-
Lee A. The third decade of microfluidics. Lab Chip. 2013 Mar 27; 13(9): 1660-1661. doi: 10.1039/c3lc90031b PMID: 23532273
-
(2013)
Lab Chip.
, vol.13
, Issue.9
, pp. 1660-1661
-
-
Lee, A.1
-
4
-
-
84865202010
-
Configurable 3D printed millifluidic and microfluidic "lab on a chip" reactionware devices
-
22875258 Sep 21
-
Kitson P, Rosnes M, Sans V, Dragone V, Cronin L. Configurable 3D printed millifluidic and microfluidic "lab on a chip" reactionware devices. Lab Chip. 2012 Sep 21; 12(18): 3267-3271. doi: 10.1039/c2lc40761b PMID: 22875258
-
(2012)
Lab Chip.
, vol.12
, Issue.18
, pp. 3267-3271
-
-
Kitson, P.1
Rosnes, M.2
Sans, V.3
Dragone, V.4
Cronin, L.5
-
5
-
-
84946137170
-
Inkjet printing of magnetic materials with aligned anisotropy
-
Song H, Spencer J, Jander A, Nielsen J, Stasiak J, Kasperchik V, et al. Inkjet printing of magnetic materials with aligned anisotropy. J. Appl. Phys. 2014; 115(17): E308.
-
(2014)
J. Appl. Phys.
, vol.115
, Issue.17
, pp. E308
-
-
Song, H.1
Spencer, J.2
Jander, A.3
Nielsen, J.4
Stasiak, J.5
Kasperchik, V.6
-
6
-
-
84897477797
-
Research highlights: Printing the future of microfabrication
-
24671475 May 07
-
Tseng P, Murray C, Kim D, Di Carlo D. Research highlights: printing the future of microfabrication. Lab Chip. 2014 May 07; 14(9): 1491-1495. doi: 10.1039/c4lc90023e PMID: 24671475
-
(2014)
Lab Chip.
, vol.14
, Issue.9
, pp. 1491-1495
-
-
Tseng, P.1
Murray, C.2
Kim, D.3
Di Carlo, D.4
-
7
-
-
84908061196
-
Discrete elements for 3D microfluidics
-
25246553 Aug 21
-
Bhargava K, Thompson B, Malmstadt N. Discrete elements for 3D microfluidics. Proc. Natl. Acad. Sci. U. S. A. 2014 Aug 21; 111(42): 15013-15018. doi: 10.1073/pnas.1414764111 PMID: 25246553
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, Issue.42
, pp. 15013-15018
-
-
Bhargava, K.1
Thompson, B.2
Malmstadt, N.3
-
8
-
-
84896508793
-
Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes
-
24512498 Feb 10
-
Shallan A, Smejkal P, Corban M, Guijt R, Breadmore M. Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes. Anal. Chem. 2014 Feb 10; 86(6): 3124-3130. doi: 10.1021/ac4041857 PMID: 24512498
-
(2014)
Anal. Chem.
, vol.86
, Issue.6
, pp. 3124-3130
-
-
Shallan, A.1
Smejkal, P.2
Corban, M.3
Guijt, R.4
Breadmore, M.5
-
9
-
-
84895514154
-
Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices
-
24510161 Apr 7
-
Au A, Lee W, Folch A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip. 2014 Apr 7; 14(7): 1294-1301. doi: 10.1039/c3lc51360b PMID: 24510161
-
(2014)
Lab Chip.
, vol.14
, Issue.7
, pp. 1294-1301
-
-
Au, A.1
Lee, W.2
Folch, A.3
-
10
-
-
85011095713
-
Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices
-
Saggiomo V, Velders A. Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices. Adv. Sci., 2: 1500125.
-
Adv. Sci.
, vol.2
, pp. 1500125
-
-
Saggiomo, V.1
Velders, A.2
-
11
-
-
84905758109
-
3D printed modules for integrated microfluidic devices
-
Jul 08
-
Lee K, Park K, Seok S, Shin S, Kim D, Park J, et al. 3D printed modules for integrated microfluidic devices. RSC Adv. 2014 Jul 08; 4: 32876-32880.
-
(2014)
RSC Adv.
, vol.4
, pp. 32876-32880
-
-
Lee, K.1
Park, K.2
Seok, S.3
Shin, S.4
Kim, D.5
Park, J.6
-
12
-
-
84901022826
-
3D printed microfluidic devices with integrated versatile and reusable electrodes
-
24763966 Jun 21
-
Erkal J, Selimovic A, Gross B, Lockwood S, Walton E, McNamara S, et al. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip. 2014 Jun 21; 14(12): 2023-2032. doi: 10.1039/c4lc00171k PMID: 24763966
-
(2014)
Lab Chip.
, vol.14
, Issue.12
, pp. 2023-2032
-
-
Erkal, J.1
Selimovic, A.2
Gross, B.3
Lockwood, S.4
Walton, E.5
McNamara, S.6
-
13
-
-
84901939254
-
3D printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine
-
24660218 Jul 7
-
Chen C, Wang Y, Lockwood S, Spence D. 3D printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine. Analyst. 2014 Jul 7; 139(13): 3219-3226. doi: 10.1039/c3an02357e PMID: 24660218
-
(2014)
Analyst.
, vol.139
, Issue.13
, pp. 3219-3226
-
-
Chen, C.1
Wang, Y.2
Lockwood, S.3
Spence, D.4
-
14
-
-
84888783450
-
3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots
-
24296063 Apr 15
-
Krejcova L, Nejdl L, Rodrigo M, Zurek M, Matousek M, Hynek D, et al. 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosens. Bioelectron. 2014 Apr 15; 54: 421-427. doi: 10.1016/j.bios.2013.10.031 PMID: 24296063
-
(2014)
Biosens. Bioelectron.
, vol.54
, pp. 421-427
-
-
Krejcova, L.1
Nejdl, L.2
Rodrigo, M.3
Zurek, M.4
Matousek, M.5
Hynek, D.6
-
15
-
-
33747599193
-
-
Aug 3
-
Kartalov E, Walker C, Taylor C, Anderson W, Scherer A. Microfluidic vias enable nested bioarrays and autoregulatory devices in Newtonian fluids. 2006 Aug 3; 103(33): 12280-12284.
-
(2006)
Microfluidic Vias Enable Nested Bioarrays and Autoregulatory Devices in Newtonian Fluids
, vol.103
, Issue.33
, pp. 12280-12284
-
-
Kartalov, E.1
Walker, C.2
Taylor, C.3
Anderson, W.4
Scherer, A.5
-
16
-
-
84879201823
-
A 3D printed fluidic device that enables integrated features
-
23687961 May 21
-
Anderson K, Lockwood S, Martin R, Spence D. A 3D printed fluidic device that enables integrated features. Anal. Chem. 2013 May 21; 85(12): 5622-5626. doi: 10.1021/ac4009594 PMID: 23687961
-
(2013)
Anal. Chem.
, vol.85
, Issue.12
, pp. 5622-5626
-
-
Anderson, K.1
Lockwood, S.2
Martin, R.3
Spence, D.4
-
17
-
-
84878126860
-
3D printed devices for continuous-flow organic chemistry
-
23766811 May 16
-
Dragone V, Sans V, Rosnes M, Kitson P, Cronin L. 3D printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 2013 May 16; 9: 951-959. doi: 10.3762/bjoc.9.109 PMID: 23766811
-
(2013)
Beilstein J. Org. Chem.
, vol.9
, pp. 951-959
-
-
Dragone, V.1
Sans, V.2
Rosnes, M.3
Kitson, P.4
Cronin, L.5
-
19
-
-
84926349262
-
3D printed microfluidic automation
-
25738695 Feb 27
-
Au AK, Bhattacharjee N, Horowitz L, Chang T, Folch A. 3D printed microfluidic automation. Lab Chip. 2015 Feb 27; 15: 1934-41. doi: 10.1039/c5lc00126a PMID: 25738695
-
(2015)
Lab Chip.
, vol.15
, pp. 1934-1941
-
-
Au, A.K.1
Bhattacharjee, N.2
Horowitz, L.3
Chang, T.4
Folch, A.5
-
20
-
-
84923793028
-
3D printed microfluidic devices with integrated valves
-
25610517 Jan 13
-
Rogers C, Qaderi K, Woolley A, Nordin G. 3D printed microfluidic devices with integrated valves. Biomicrofluidics. 2015 Jan 13; 9(1): 016501. doi: 10.1063/1.4905840 PMID: 25610517
-
(2015)
Biomicrofluidics.
, vol.9
, Issue.1
, pp. 016501
-
-
Rogers, C.1
Qaderi, K.2
Woolley, A.3
Nordin, G.4
-
21
-
-
84865202010
-
Configurable 3D printed millifluidic and microfluidic "lab on a chip" reactionware devices
-
22875258 Sep 21
-
Kitson P, Rosnes M, Sans V, Dragone V, Cronin L. Configurable 3D printed millifluidic and microfluidic "lab on a chip" reactionware devices. Lab Chip. 2012 Sep 21; 12(18): 3267-3271. doi: 10.1039/c2lc40761b PMID: 22875258
-
(2012)
Lab Chip.
, vol.12
, Issue.18
, pp. 3267-3271
-
-
Kitson, P.1
Rosnes, M.2
Sans, V.3
Dragone, V.4
Cronin, L.5
-
22
-
-
84956932870
-
Beyond 3D Printing: The New Dimensions of Additive Fabrication. Designing for Emerging Technologies: UX for Genomics, Robotics, and the Internet of Things
-
Keating S. Beyond 3D Printing: The New Dimensions of Additive Fabrication. Designing for Emerging Technologies: UX for Genomics, Robotics, and the Internet of Things. O'Reilly Media; 2014. p. 379-405.
-
(2014)
O'Reilly Media
, pp. 379-405
-
-
Keating, S.1
-
24
-
-
34347256054
-
Microfluidic large-scale integration: The evolution of design rules for biological automation
-
17269901
-
Melin J, Quake S. Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 2007; 36: 213-231. PMID: 17269901
-
(2007)
Annu. Rev. Biophys. Biomol. Struct.
, vol.36
, pp. 213-231
-
-
Melin, J.1
Quake, S.2
-
26
-
-
84984793322
-
-
Stratasys
-
Stratasys Ltd. Polyjet Price List [Internet]. Stratasys; 2015. Available: http://www.stratasys.com/materials/material-safety-data-sheets/polyjet.
-
(2015)
Polyjet Price List [Internet]
-
-
Stratasys Ltd1
-
29
-
-
84984857747
-
-
Online 3D Printing Service [Internet]. I materialize
-
i.materialise. Online 3D Printing Service [Internet]. I materialize; 2016. Available: https://i.materialise. com.
-
(2016)
Imaterialise
-
-
-
30
-
-
84984839269
-
-
Lulzbot, Aleph Objects, Inc
-
Slic3r Manual [Internet]. Lulzbot, Aleph Objects, Inc; 2016. Available: http://manual.slic3r.org/.
-
(2016)
Slic3r Manual [Internet]
-
-
-
32
-
-
84984808818
-
-
Mushtari [Internet]. Bader C, Patrick W, Kolb D, Hays S, Keating S, Sharma S, et al.; 2015. Available: http://matter.media.mit.edu/environments/details/wanderers-living-mushtari.
-
(2015)
Mushtari [Internet]
-
-
Bader, C.1
Patrick, W.2
Kolb, D.3
Hays, S.4
Keating, S.5
Sharma, S.6
|