-
1
-
-
0034727086
-
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
-
Tarascon, J.-M.; Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries Nature 2000, 407, 496-499 10.1038/35035045
-
(2000)
Nature
, vol.407
, pp. 496-499
-
-
Tarascon, J.-M.1
Poizot, P.2
Laruelle, S.3
Grugeon, S.4
Dupont, L.5
-
2
-
-
0035370173
-
Recent developments in lithium ion batteries
-
Wakihara, M. Recent developments in lithium ion batteries Mater. Sci. Eng., R 2001, 33, 109-134 10.1016/S0927-796X(01)00030-4
-
(2001)
Mater. Sci. Eng., R
, vol.33
, pp. 109-134
-
-
Wakihara, M.1
-
3
-
-
33646577838
-
Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes
-
Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes Science 2006, 312, 885-888 10.1126/science.1122716
-
(2006)
Science
, vol.312
, pp. 885-888
-
-
Nam, K.T.1
Kim, D.W.2
Yoo, P.J.3
Chiang, C.Y.4
Meethong, N.5
Hammond, P.T.6
Chiang, Y.M.7
Belcher, A.M.8
-
4
-
-
80052230656
-
Challenges in the development of advanced Li-ion batteries: A review
-
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review Energy Environ. Sci. 2011, 4, 3243-3262 10.1039/c1ee01598b
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3243-3262
-
-
Etacheri, V.1
Marom, R.2
Elazari, R.3
Salitra, G.4
Aurbach, D.5
-
5
-
-
84948651708
-
3OCl anti-perovskite superionic conductor
-
3OCl anti-perovskite superionic conductor Phys. Chem. Chem. Phys. 2015, 17, 32547-32555 10.1039/C5CP05722A
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 32547-32555
-
-
Lu, Z.1
Chen, C.2
Baiyee, Z.M.3
Chen, X.4
Niu, C.5
Ciucci, F.6
-
6
-
-
84961784341
-
Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries
-
Jiang, H.; Lu, Z.; Wu, M.; Ciucci, F.; Zhao, T. Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries Nano Energy 2016, 23, 97-104 10.1016/j.nanoen.2016.03.013
-
(2016)
Nano Energy
, vol.23
, pp. 97-104
-
-
Jiang, H.1
Lu, Z.2
Wu, M.3
Ciucci, F.4
Zhao, T.5
-
7
-
-
84962588690
-
2C Monolayer as Anodes for Lithium-Ion and Sodium-Ion Batteries
-
2C Monolayer as Anodes for Lithium-Ion and Sodium-Ion Batteries J. Phys. Chem. Lett. 2016, 7, 937-943 10.1021/acs.jpclett.6b00171
-
(2016)
J. Phys. Chem. Lett.
, vol.7
, pp. 937-943
-
-
Sun, Q.1
Dai, Y.2
Ma, Y.3
Jing, T.4
Wei, W.5
Huang, B.6
-
9
-
-
84938784269
-
Screen printed cathode for non-aqueous lithium-oxygen batteries
-
Jung, C.; Zhao, T.; An, L.; Zeng, L.; Wei, Z. Screen printed cathode for non-aqueous lithium-oxygen batteries J. Power Sources 2015, 297, 174-180 10.1016/j.jpowsour.2015.07.089
-
(2015)
J. Power Sources
, vol.297
, pp. 174-180
-
-
Jung, C.1
Zhao, T.2
An, L.3
Zeng, L.4
Wei, Z.5
-
10
-
-
84884690429
-
Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries
-
Xu, J.; Wang, Z.; Xu, D.; Zhang, L.; Zhang, X. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries Nat. Commun. 2013, 4, 2438 10.1038/ncomms3438
-
(2013)
Nat. Commun.
, vol.4
, pp. 2438
-
-
Xu, J.1
Wang, Z.2
Xu, D.3
Zhang, L.4
Zhang, X.5
-
11
-
-
84970951421
-
2/NiO cathode enables the operation of non-aqueous lithium-air batteries in ambient air
-
2/NiO cathode enables the operation of non-aqueous lithium-air batteries in ambient air Energy Environ. Sci. 2016, 9, 1783-1793 10.1039/C6EE00550K
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 1783-1793
-
-
Tan, P.1
Wei, Z.2
Shyy, W.3
Zhao, T.4
Zhu, X.5
-
13
-
-
0029769438
-
A polymer electrolyte-based rechargeable lithium/oxygen battery
-
Abraham, K.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery J. Electrochem. Soc. 1996, 143, 1-5 10.1149/1.1836378
-
(1996)
J. Electrochem. Soc.
, vol.143
, pp. 1-5
-
-
Abraham, K.1
Jiang, Z.2
-
14
-
-
77954754227
-
Lithium-air battery: Promise and challenges
-
Girishkumar, G.; McCloskey, B.; Luntz, A.; Swanson, S.; Wilcke, W. Lithium-air battery: promise and challenges J. Phys. Chem. Lett. 2010, 1, 2193-2203 10.1021/jz1005384
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 2193-2203
-
-
Girishkumar, G.1
McCloskey, B.2
Luntz, A.3
Swanson, S.4
Wilcke, W.5
-
15
-
-
71249107420
-
Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity
-
Tran, C.; Yang, X.; Qu, D. Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity J. Power Sources 2010, 195, 2057-2063 10.1016/j.jpowsour.2009.10.012
-
(2010)
J. Power Sources
, vol.195
, pp. 2057-2063
-
-
Tran, C.1
Yang, X.2
Qu, D.3
-
17
-
-
84907548884
-
A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries
-
Tan, P.; Shyy, W.; Wei, Z.; An, L.; Zhao, T. A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries Electrochim. Acta 2014, 147, 1-8 10.1016/j.electacta.2014.09.074
-
(2014)
Electrochim. Acta
, vol.147
, pp. 1-8
-
-
Tan, P.1
Shyy, W.2
Wei, Z.3
An, L.4
Zhao, T.5
-
18
-
-
84904535651
-
A gradient porous cathode for non-aqueous lithium-air batteries leading to a high capacity
-
Tan, P.; Shyy, W.; An, L.; Wei, Z.; Zhao, T. A gradient porous cathode for non-aqueous lithium-air batteries leading to a high capacity Electrochem. Commun. 2014, 46, 111-114 10.1016/j.elecom.2014.06.026
-
(2014)
Electrochem. Commun.
, vol.46
, pp. 111-114
-
-
Tan, P.1
Shyy, W.2
An, L.3
Wei, Z.4
Zhao, T.5
-
19
-
-
80052077844
-
Oxygen reduction by lithium on model carbon and oxidized carbon structures
-
Xu, Y.; Shelton, W. A. Oxygen reduction by lithium on model carbon and oxidized carbon structures J. Electrochem. Soc. 2011, 158, A1177-A1184 10.1149/1.3625620
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A1177-A1184
-
-
Xu, Y.1
Shelton, W.A.2
-
20
-
-
84860191490
-
2 batteries
-
2 batteries J. Phys. Chem. Lett. 2012, 3, 997-1001 10.1021/jz300243r
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 997-1001
-
-
McCloskey, B.1
Speidel, A.2
Scheffler, R.3
Miller, D.4
Viswanathan, V.5
Hummelshøj, J.6
Nørskov, J.7
Luntz, A.8
-
22
-
-
84885447962
-
Reactivity of carbon in lithium-oxygen battery positive electrodes
-
Itkis, D. M.; Semenenko, D. A.; Kataev, E. Y.; Belova, A. I.; Neudachina, V. S.; Sirotina, A. P.; Hävecker, M.; Teschner, D.; Knop-Gericke, A.; Dudin, P. et al. Reactivity of carbon in lithium-oxygen battery positive electrodes Nano Lett. 2013, 13, 4697-4701 10.1021/nl4021649
-
(2013)
Nano Lett.
, vol.13
, pp. 4697-4701
-
-
Itkis, D.M.1
Semenenko, D.A.2
Kataev, E.Y.3
Belova, A.I.4
Neudachina, V.S.5
Sirotina, A.P.6
Hävecker, M.7
Teschner, D.8
Knop-Gericke, A.9
Dudin, P.10
-
25
-
-
84917708860
-
Positive role of surface defects on carbon nanotube cathodes in overpotential and capacity retention of rechargeable lithium-oxygen batteries
-
Huang, S.; Fan, W.; Guo, X.; Meng, F.; Liu, X. Positive role of surface defects on carbon nanotube cathodes in overpotential and capacity retention of rechargeable lithium-oxygen batteries ACS Appl. Mater. Interfaces 2014, 6, 21567-21575 10.1021/am506564n
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 21567-21575
-
-
Huang, S.1
Fan, W.2
Guo, X.3
Meng, F.4
Liu, X.5
-
26
-
-
84930659029
-
The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: A first-principles study
-
Ren, X.; Wang, B.; Zhu, J.; Liu, J.; Zhang, W.; Wen, Z. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study Phys. Chem. Chem. Phys. 2015, 17, 14605-14612 10.1039/C5CP00869G
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 14605-14612
-
-
Ren, X.1
Wang, B.2
Zhu, J.3
Liu, J.4
Zhang, W.5
Wen, Z.6
-
27
-
-
84941663830
-
2 Batteries
-
2 Batteries ACS Catal. 2015, 5, 4309-4317 10.1021/acscatal.5b00332
-
(2015)
ACS Catal.
, vol.5
, pp. 4309-4317
-
-
Jing, Y.1
Zhou, Z.2
-
29
-
-
0036827661
-
First-principles computation of material properties: The ABINIT software project
-
Gonze, X.; Beuken, J.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F. et al. First-principles computation of material properties: the ABINIT software project Comput. Mater. Sci. 2002, 25, 478-492 10.1016/S0927-0256(02)00325-7
-
(2002)
Comput. Mater. Sci.
, vol.25
, pp. 478-492
-
-
Gonze, X.1
Beuken, J.2
Caracas, R.3
Detraux, F.4
Fuchs, M.5
Rignanese, G.6
Sindic, L.7
Verstraete, M.8
Zerah, G.9
Jollet, F.10
-
30
-
-
4243943295
-
Generalized gradient approximation made simple
-
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple Phys. Rev. Lett. 1996, 77, 3865-3868 10.1103/PhysRevLett.77.3865
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
31
-
-
0011236321
-
From ultrasoft pseudopotentials to the projector augmented-wave method
-
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758-1775 10.1103/PhysRevB.59.1758
-
(1999)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.59
, pp. 1758-1775
-
-
Kresse, G.1
Joubert, D.2
-
32
-
-
38149067488
-
Dissociative adsorption of water at vacancy defects in graphite
-
Cabrera-Sanfelix, P.; Darling, G. R. Dissociative adsorption of water at vacancy defects in graphite J. Phys. Chem. C 2007, 111, 18258-18263 10.1021/jp076241b
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 18258-18263
-
-
Cabrera-Sanfelix, P.1
Darling, G.R.2
-
33
-
-
38049108191
-
A computational study of the adsorption of small Ag and Au nanoclusters on graphite
-
Jalkanen, J.; Halonen, M.; Fernández-Torre, D.; Laasonen, K.; Halonen, L. A computational study of the adsorption of small Ag and Au nanoclusters on graphite J. Phys. Chem. A 2007, 111, 12317-12326 10.1021/jp074969m
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 12317-12326
-
-
Jalkanen, J.1
Halonen, M.2
Fernández-Torre, D.3
Laasonen, K.4
Halonen, L.5
-
34
-
-
84893678082
-
Fluorine interaction with defects on graphite surface by a first-principles study
-
Wang, S.; Xuezhi, K.; Zhang, W.; Gong, W.; Huai, P.; Zhang, W.; Zhu, Z. Fluorine interaction with defects on graphite surface by a first-principles study Appl. Surf. Sci. 2014, 292, 488-493 10.1016/j.apsusc.2013.12.001
-
(2014)
Appl. Surf. Sci.
, vol.292
, pp. 488-493
-
-
Wang, S.1
Xuezhi, K.2
Zhang, W.3
Gong, W.4
Huai, P.5
Zhang, W.6
Zhu, Z.7
-
35
-
-
84929310251
-
Theoretical study of the interaction between metallic fission products and defective graphite
-
Xia, D.; Ren, C.; Zhang, W.; Han, H.; Wang, C.; Zhang, X.; Cheng, C.; Huai, P. Theoretical study of the interaction between metallic fission products and defective graphite Comput. Mater. Sci. 2015, 106, 129-134 10.1016/j.commatsci.2015.04.029
-
(2015)
Comput. Mater. Sci.
, vol.106
, pp. 129-134
-
-
Xia, D.1
Ren, C.2
Zhang, W.3
Han, H.4
Wang, C.5
Zhang, X.6
Cheng, C.7
Huai, P.8
-
36
-
-
84973864130
-
Computational Insights into the Effect of Carbon Structures at the Atomic Level for Non-Aqueous Sodium-Oxygen Batteries
-
Jiang, H.; Wu, M.; Zhou, X.; Yan, X.; Zhao, T. Computational Insights into the Effect of Carbon Structures at the Atomic Level for Non-Aqueous Sodium-Oxygen Batteries J. Power Sources 2016, 325, 91-97 10.1016/j.jpowsour.2016.05.132
-
(2016)
J. Power Sources
, vol.325
, pp. 91-97
-
-
Jiang, H.1
Wu, M.2
Zhou, X.3
Yan, X.4
Zhao, T.5
-
37
-
-
0004157278
-
-
4 th ed. American Institute of Physics: Melville, NY
-
Chase, M. W. NIST-JANAF Thermochemical Tables, 4 th ed.; American Institute of Physics: Melville, NY, 1998.
-
(1998)
NIST-JANAF Thermochemical Tables
-
-
Chase, M.W.1
-
38
-
-
77149173768
-
Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery
-
Hummelshøj, J. S.; Blomqvist, J.; Datta, S.; Vegge, T.; Rossmeisl, J.; Thygesen, K. S.; Luntz, A.; Jacobsen, K. W.; Nørskov, J. K. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery J. Chem. Phys. 2010, 132, 071101 10.1063/1.3298994
-
(2010)
J. Chem. Phys.
, vol.132
, pp. 071101
-
-
Hummelshøj, J.S.1
Blomqvist, J.2
Datta, S.3
Vegge, T.4
Rossmeisl, J.5
Thygesen, K.S.6
Luntz, A.7
Jacobsen, K.W.8
Nørskov, J.K.9
-
40
-
-
84906685771
-
Improved reversibility in lithium-oxygen battery: Understanding elementary reactions and surface charge engineering of metal alloy catalyst
-
Kim, B. G.; Kim, H.; Back, S.; Nam, K. W.; Jung, Y.; Han, Y.; Choi, J. W. Improved reversibility in lithium-oxygen battery: Understanding elementary reactions and surface charge engineering of metal alloy catalyst Sci. Rep. 2014, 4, 4225 10.1038/srep04225
-
(2014)
Sci. Rep.
, vol.4
, pp. 4225
-
-
Kim, B.G.1
Kim, H.2
Back, S.3
Nam, K.W.4
Jung, Y.5
Han, Y.6
Choi, J.W.7
-
41
-
-
84896916781
-
2 batteries through surface atom arrangement of PdCu nanocatalysts
-
2 batteries through surface atom arrangement of PdCu nanocatalysts Energy Environ. Sci. 2014, 7, 1362-1368 10.1039/c3ee43437k
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1362-1368
-
-
Choi, R.1
Jung, J.2
Kim, G.3
Song, K.4
Kim, Y.5
Jung, S.C.6
Han, Y.7
Song, H.8
Kang, Y.9
-
42
-
-
84910081855
-
Carbon-free and two-dimensional cathode structure based on silicene for lithium-oxygen batteries: A first-principles calculation
-
Hwang, Y.; Yun, K.; Chung, Y. Carbon-free and two-dimensional cathode structure based on silicene for lithium-oxygen batteries: A first-principles calculation J. Power Sources 2015, 275, 32-37 10.1016/j.jpowsour.2014.11.016
-
(2015)
J. Power Sources
, vol.275
, pp. 32-37
-
-
Hwang, Y.1
Yun, K.2
Chung, Y.3
-
43
-
-
84928385279
-
Greatly improved electrochemical performance of lithium-oxygen batteries with a bimetallic platinum-copper alloy catalyst
-
Lee, M.; Hwang, Y.; Yun, K.; Chung, Y. Greatly improved electrochemical performance of lithium-oxygen batteries with a bimetallic platinum-copper alloy catalyst J. Power Sources 2015, 288, 296-301 10.1016/j.jpowsour.2015.04.143
-
(2015)
J. Power Sources
, vol.288
, pp. 296-301
-
-
Lee, M.1
Hwang, Y.2
Yun, K.3
Chung, Y.4
-
44
-
-
84918558890
-
2 battery: A density functional theory study
-
2 battery: A density functional theory study J. Power Sources 2015, 277, 222-227 10.1016/j.jpowsour.2014.12.021
-
(2015)
J. Power Sources
, vol.277
, pp. 222-227
-
-
Yun, K.1
Hwang, Y.2
Chung, Y.3
-
45
-
-
84907789818
-
B-Doped Graphene as Catalyst to Improve Charge Rate of Lithium-Air Battery
-
Ren, X.; Zhu, J.; Du, F.; Liu, J.; Zhang, W. B-Doped Graphene as Catalyst to Improve Charge Rate of Lithium-Air Battery J. Phys. Chem. C 2014, 118, 22412-22418 10.1021/jp505876z
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 22412-22418
-
-
Ren, X.1
Zhu, J.2
Du, F.3
Liu, J.4
Zhang, W.5
-
48
-
-
79952275635
-
Structural defects in graphene
-
Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene ACS Nano 2011, 5, 26-41 10.1021/nn102598m
-
(2011)
ACS Nano
, vol.5
, pp. 26-41
-
-
Banhart, F.1
Kotakoski, J.2
Krasheninnikov, A.V.3
-
49
-
-
84873739983
-
Small Pd cluster adsorbed double vacancy defect graphene sheet for hydrogen storage: A first-principles study
-
Sen, D.; Thapa, R.; Chattopadhyay, K. Small Pd cluster adsorbed double vacancy defect graphene sheet for hydrogen storage: A first-principles study Int. J. Hydrogen Energy 2013, 38, 3041-3049 10.1016/j.ijhydene.2012.12.113
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, pp. 3041-3049
-
-
Sen, D.1
Thapa, R.2
Chattopadhyay, K.3
-
50
-
-
79958739975
-
Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells
-
Zhang, L.; Xia, Z. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells J. Phys. Chem. C 2011, 115, 11170-11176 10.1021/jp201991j
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 11170-11176
-
-
Zhang, L.1
Xia, Z.2
-
51
-
-
84894523154
-
Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells
-
Zhang, L.; Niu, J.; Li, M.; Xia, Z. Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells J. Phys. Chem. C 2014, 118, 3545-3553 10.1021/jp410501u
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 3545-3553
-
-
Zhang, L.1
Niu, J.2
Li, M.3
Xia, Z.4
-
52
-
-
84870714196
-
First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries
-
Yan, H.; Xu, B.; Shi, S.; Ouyang, C. First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries J. Appl. Phys. 2012, 112, 104316 10.1063/1.4766919
-
(2012)
J. Appl. Phys.
, vol.112
, pp. 104316
-
-
Yan, H.1
Xu, B.2
Shi, S.3
Ouyang, C.4
-
53
-
-
84878095245
-
Feasibility of lithium storage on graphene and its derivatives
-
Liu, Y.; Artyukhov, V. I.; Liu, M.; Harutyunyan, A. R.; Yakobson, B. I. Feasibility of lithium storage on graphene and its derivatives J. Phys. Chem. Lett. 2013, 4, 1737-1742 10.1021/jz400491b
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 1737-1742
-
-
Liu, Y.1
Artyukhov, V.I.2
Liu, M.3
Harutyunyan, A.R.4
Yakobson, B.I.5
-
56
-
-
84902002542
-
A non-carbon cathode electrode for lithium-oxygen batteries
-
Wei, Z.; Tan, P.; An, L.; Zhao, T. A non-carbon cathode electrode for lithium-oxygen batteries Appl. Energy 2014, 130, 134-138 10.1016/j.apenergy.2014.05.029
-
(2014)
Appl. Energy
, vol.130
, pp. 134-138
-
-
Wei, Z.1
Tan, P.2
An, L.3
Zhao, T.4
-
57
-
-
84963500950
-
Integrated Porous Cathode made of Pure Perovskite Lanthanum Nickel Oxide for Nonaqueous Lithium-Oxygen Batteries
-
Wei, Z.; Zhao, T.; Zhu, X.; An, L.; Tan, P. Integrated Porous Cathode made of Pure Perovskite Lanthanum Nickel Oxide for Nonaqueous Lithium-Oxygen Batteries Energy Technology 2015, 3, 1093-1100 10.1002/ente.201500153
-
(2015)
Energy Technology
, vol.3
, pp. 1093-1100
-
-
Wei, Z.1
Zhao, T.2
Zhu, X.3
An, L.4
Tan, P.5
|