-
1
-
-
0035370173
-
Recent developments in lithium ion batteries
-
Wakihara, M. Recent developments in lithium ion batteries Mater. Sci. Eng., R 2001, 33, 109-134 10.1016/S0927-796X(01)00030-4
-
(2001)
Mater. Sci. Eng., R
, vol.33
, pp. 109-134
-
-
Wakihara, M.1
-
2
-
-
84896980826
-
4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries
-
4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries Nano Energy 2014, 6, 19-26 10.1016/j.nanoen.2014.02.012
-
(2014)
Nano Energy
, vol.6
, pp. 19-26
-
-
Wang, J.1
Zhang, Q.2
Li, X.3
Xu, D.4
Wang, Z.5
Guo, H.6
Zhang, K.7
-
3
-
-
84921648766
-
Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage
-
Wang, J.; Zhang, Q.; Li, X.; Zhang, B.; Mai, L.; Zhang, K. Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage Nano Energy 2015, 12, 437-446 10.1016/j.nanoen.2015.01.003
-
(2015)
Nano Energy
, vol.12
, pp. 437-446
-
-
Wang, J.1
Zhang, Q.2
Li, X.3
Zhang, B.4
Mai, L.5
Zhang, K.6
-
4
-
-
84948651708
-
3OCl anti-perovskite superionic conductor
-
3OCl anti-perovskite superionic conductor Phys. Chem. Chem. Phys. 2015, 17, 32547-32555 10.1039/C5CP05722A
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 32547-32555
-
-
Lu, Z.1
Chen, C.2
Baiyee, Z.M.3
Chen, X.4
Niu, C.5
Ciucci, F.6
-
5
-
-
77954754227
-
Lithium-air battery: Promise and challenges
-
Girishkumar, G.; McCloskey, B.; Luntz, A.; Swanson, S.; Wilcke, W. Lithium-air battery: promise and challenges J. Phys. Chem. Lett. 2010, 1, 2193-2203 10.1021/jz1005384
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 2193-2203
-
-
Girishkumar, G.1
McCloskey, B.2
Luntz, A.3
Swanson, S.4
Wilcke, W.5
-
6
-
-
79954482443
-
Metal-air batteries with high energy density: Li-air versus Zn-air
-
Lee, J.; Tai Kim, S.; Cao, R.; Choi, N.; Liu, M.; Lee, K. T.; Cho, J. Metal-air batteries with high energy density: Li-air versus Zn-air Adv. Energy Mater. 2011, 1, 34-50 10.1002/aenm.201000010
-
(2011)
Adv. Energy Mater.
, vol.1
, pp. 34-50
-
-
Lee, J.1
Tai Kim, S.2
Cao, R.3
Choi, N.4
Liu, M.5
Lee, K.T.6
Cho, J.7
-
7
-
-
84886899285
-
2 batteries based on a large surface area carbon cathode
-
2 batteries based on a large surface area carbon cathode J. Am. Chem. Soc. 2013, 135, 15364-15372 10.1021/ja403199d
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 15364-15372
-
-
Zhai, D.1
Wang, H.2
Yang, J.3
Lau, K.C.4
Li, K.5
Amine, K.6
Curtiss, L.A.7
-
8
-
-
84907548884
-
A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries
-
Tan, P.; Shyy, W.; Wei, Z.; An, L.; Zhao, T. A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries Electrochim. Acta 2014, 147, 1-8 10.1016/j.electacta.2014.09.074
-
(2014)
Electrochim. Acta
, vol.147
, pp. 1-8
-
-
Tan, P.1
Shyy, W.2
Wei, Z.3
An, L.4
Zhao, T.5
-
9
-
-
84919686317
-
Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries
-
Tan, P.; Shyy, W.; Zhao, T.; Wei, Z.; An, L. Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries J. Power Sources 2015, 278, 133-140 10.1016/j.jpowsour.2014.12.049
-
(2015)
J. Power Sources
, vol.278
, pp. 133-140
-
-
Tan, P.1
Shyy, W.2
Zhao, T.3
Wei, Z.4
An, L.5
-
10
-
-
84963500950
-
Integrated Porous Cathode made of Pure Perovskite Lanthanum Nickel Oxide for Nonaqueous Lithium-Oxygen Batteries
-
Wei, Z.; Zhao, T.; Zhu, X.; An, L.; Tan, P. Integrated Porous Cathode made of Pure Perovskite Lanthanum Nickel Oxide for Nonaqueous Lithium-Oxygen Batteries Energy Technology 2015, 3, 1093-1100 10.1002/ente.201500153
-
(2015)
Energy Technology
, vol.3
, pp. 1093-1100
-
-
Wei, Z.1
Zhao, T.2
Zhu, X.3
An, L.4
Tan, P.5
-
11
-
-
84907733360
-
Modeling of lithium-oxygen batteries with the discharge product treated as a discontinuous deposit layer
-
Jung, C.; Zhao, T.; An, L. Modeling of lithium-oxygen batteries with the discharge product treated as a discontinuous deposit layer J. Power Sources 2015, 273, 440-447 10.1016/j.jpowsour.2014.09.103
-
(2015)
J. Power Sources
, vol.273
, pp. 440-447
-
-
Jung, C.1
Zhao, T.2
An, L.3
-
13
-
-
84938784269
-
Screen printed cathode for non-aqueous lithium-oxygen batteries
-
Jung, C.; Zhao, T.; An, L.; Zeng, L.; Wei, Z. Screen printed cathode for non-aqueous lithium-oxygen batteries J. Power Sources 2015, 297, 174-180 10.1016/j.jpowsour.2015.07.089
-
(2015)
J. Power Sources
, vol.297
, pp. 174-180
-
-
Jung, C.1
Zhao, T.2
An, L.3
Zeng, L.4
Wei, Z.5
-
14
-
-
84946761304
-
4 nano particles in the discharge products of non-aqueous lithium-oxygen batteries leads to lower charge overvoltage
-
4 nano particles in the discharge products of non-aqueous lithium-oxygen batteries leads to lower charge overvoltage Phys. Chem. Chem. Phys. 2015, 17, 29859-29866 10.1039/C5CP03886C
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 29859-29866
-
-
Shi, L.1
Xu, A.2
Zhao, T.3
-
15
-
-
84866721087
-
Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery
-
Evers, S.; Yim, T.; Nazar, L. F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery J. Phys. Chem. C 2012, 116, 19653-19658 10.1021/jp304380j
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 19653-19658
-
-
Evers, S.1
Yim, T.2
Nazar, L.F.3
-
16
-
-
10944234873
-
Polysulfide shuttle study in the Li/S battery system
-
Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system J. Electrochem. Soc. 2004, 151, A1969-A1976 10.1149/1.1806394
-
(2004)
J. Electrochem. Soc.
, vol.151
, pp. A1969-A1976
-
-
Mikhaylik, Y.V.1
Akridge, J.R.2
-
18
-
-
84893433610
-
First-principles study of the reaction mechanism in sodium-oxygen batteries
-
Lee, B.; Seo, D.; Lim, H.; Park, I.; Park, K.; Kim, J.; Kang, K. First-principles study of the reaction mechanism in sodium-oxygen batteries Chem. Mater. 2014, 26, 1048-1055 10.1021/cm403163c
-
(2014)
Chem. Mater.
, vol.26
, pp. 1048-1055
-
-
Lee, B.1
Seo, D.2
Lim, H.3
Park, I.4
Park, K.5
Kim, J.6
Kang, K.7
-
19
-
-
84863107770
-
4-graphene hybrid as an oxygen cathode catalyst
-
4-graphene hybrid as an oxygen cathode catalyst Energy Environ. Sci. 2012, 5, 7931-7935 10.1039/c2ee21746e
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 7931-7935
-
-
Wang, H.1
Yang, Y.2
Liang, Y.3
Zheng, G.4
Li, Y.5
Cui, Y.6
Dai, H.7
-
20
-
-
84893912538
-
Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes
-
Wang, Z.; Xu, D.; Xu, J.; Zhang, X. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes Chem. Soc. Rev. 2014, 43, 7746-7786 10.1039/C3CS60248F
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7746-7786
-
-
Wang, Z.1
Xu, D.2
Xu, J.3
Zhang, X.4
-
21
-
-
72149105055
-
Elucidating the mechanism of oxygen reduction for lithium-air battery applications
-
Laoire, C. O.; Mukerjee, S.; Abraham, K.; Plichta, E. J.; Hendrickson, M. A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications J. Phys. Chem. C 2009, 113, 20127-20134 10.1021/jp908090s
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 20127-20134
-
-
Laoire, C.O.1
Mukerjee, S.2
Abraham, K.3
Plichta, E.J.4
Hendrickson, M.A.5
-
22
-
-
84884690429
-
Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries
-
Xu, J.; Wang, Z.; Xu, D.; Zhang, L.; Zhang, X. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4. 10.1038/ncomms3438
-
(2013)
Nat. Commun.
, vol.4
-
-
Xu, J.1
Wang, Z.2
Xu, D.3
Zhang, L.4
Zhang, X.5
-
23
-
-
84875641198
-
Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance
-
Lu, Y.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Lithium-oxygen batteries: bridging mechanistic understanding and battery performance Energy Environ. Sci. 2013, 6, 750-768 10.1039/c3ee23966g
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 750-768
-
-
Lu, Y.1
Gallant, B.M.2
Kwabi, D.G.3
Harding, J.R.4
Mitchell, R.R.5
Whittingham, M.S.6
Shao-Horn, Y.7
-
24
-
-
84902532101
-
2 batteries
-
2 batteries Chem. Rev. 2014, 114, 5611-5640 10.1021/cr400573b
-
(2014)
Chem. Rev.
, vol.114
, pp. 5611-5640
-
-
Lu, J.1
Li, L.2
Park, J.3
Sun, Y.4
Wu, F.5
Amine, K.6
-
25
-
-
84907789818
-
B-Doped Graphene as Catalyst to Improve Charge Rate of Lithium-Air Battery
-
Ren, X.; Zhu, J.; Du, F.; Liu, J.; Zhang, W. B-Doped Graphene as Catalyst to Improve Charge Rate of Lithium-Air Battery J. Phys. Chem. C 2014, 118, 22412-22418 10.1021/jp505876z
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 22412-22418
-
-
Ren, X.1
Zhu, J.2
Du, F.3
Liu, J.4
Zhang, W.5
-
26
-
-
84930659029
-
The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: A first-principles study
-
Ren, X.; Wang, B.; Zhu, J.; Liu, J.; Zhang, W.; Wen, Z. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study Phys. Chem. Chem. Phys. 2015, 17, 14605-14612 10.1039/C5CP00869G
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 14605-14612
-
-
Ren, X.1
Wang, B.2
Zhu, J.3
Liu, J.4
Zhang, W.5
Wen, Z.6
-
28
-
-
80052077844
-
Oxygen reduction by lithium on model carbon and oxidized carbon structures
-
Xu, Y.; Shelton, W. A. Oxygen reduction by lithium on model carbon and oxidized carbon structures J. Electrochem. Soc. 2011, 158, A1177-A1184 10.1149/1.3625620
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A1177-A1184
-
-
Xu, Y.1
Shelton, W.A.2
-
29
-
-
84918558890
-
2 battery: A density functional theory study
-
2 battery: A density functional theory study J. Power Sources 2015, 277, 222-227 10.1016/j.jpowsour.2014.12.021
-
(2015)
J. Power Sources
, vol.277
, pp. 222-227
-
-
Yun, K.1
Hwang, Y.2
Chung, Y.3
-
30
-
-
84887877433
-
2 batteries
-
2 batteries Energy Environ. Sci. 2013, 6, 3570-3575 10.1039/c3ee41910j
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3570-3575
-
-
Lim, H.1
Song, H.2
Gwon, H.3
Park, K.4
Kim, J.5
Bae, Y.6
Kim, H.7
Jung, S.8
Kim, T.9
Kim, Y.H.10
-
31
-
-
84859624508
-
Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium
-
Dathar, G. K. P.; Shelton, W. A.; Xu, Y. Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium J. Phys. Chem. Lett. 2012, 3, 891-895 10.1021/jz300142y
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 891-895
-
-
Dathar, G.K.P.1
Shelton, W.A.2
Xu, Y.3
-
33
-
-
84929179434
-
2 batteries: Surface oxygen density
-
2 batteries: Surface oxygen density Chem. Mater. 2015, 27, 3243-3249 10.1021/acs.chemmater.5b00056
-
(2015)
Chem. Mater.
, vol.27
, pp. 3243-3249
-
-
Zheng, Y.1
Song, K.2
Jung, J.3
Li, C.4
Heo, Y.5
Park, M.6
Cho, M.7
Kang, Y.8
Cho, K.9
-
34
-
-
84941642966
-
2 nanoparticle-decorated buckypaper cathode for non-aqueous lithium-oxygen batteries
-
2 nanoparticle-decorated buckypaper cathode for non-aqueous lithium-oxygen batteries J. Mater. Chem. A 2015, 3, 19042-19049 10.1039/C5TA06133D
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 19042-19049
-
-
Tan, P.1
Shyy, W.2
Zhao, T.3
Zhu, X.4
Wei, Z.5
-
35
-
-
84906685771
-
Improved reversibility in lithium-oxygen battery: Understanding elementary reactions and surface charge engineering of metal alloy catalyst
-
Kim, B. G.; Kim, H.; Back, S.; Nam, K. W.; Jung, Y.; Han, Y.; Choi, J. W. Improved reversibility in lithium-oxygen battery: Understanding elementary reactions and surface charge engineering of metal alloy catalyst. Sci. Rep. 2014, 4. 10.1038/srep04225
-
(2014)
Sci. Rep.
, vol.4
-
-
Kim, B.G.1
Kim, H.2
Back, S.3
Nam, K.W.4
Jung, Y.5
Han, Y.6
Choi, J.W.7
-
36
-
-
84896916781
-
2 batteries through surface atom arrangement of PdCu nanocatalysts
-
2 batteries through surface atom arrangement of PdCu nanocatalysts Energy Environ. Sci. 2014, 7, 1362-1368 10.1039/c3ee43437k
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1362-1368
-
-
Choi, R.1
Jung, J.2
Kim, G.3
Song, K.4
Kim, Y.5
Jung, S.C.6
Han, Y.7
Song, H.8
Kang, Y.9
-
37
-
-
84888347981
-
2 batteries in an ether-based electrolyte
-
2 batteries in an ether-based electrolyte Phys. Chem. Chem. Phys. 2013, 15, 20262-20271 10.1039/c3cp53534g
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 20262-20271
-
-
Kim, S.Y.1
Lee, H.2
Kim, K.3
-
38
-
-
84870458049
-
2 battery cathodes
-
2 battery cathodes ACS Nano 2012, 6, 9764-9776 10.1021/nn303275d
-
(2012)
ACS Nano
, vol.6
, pp. 9764-9776
-
-
Wu, G.1
Mack, N.H.2
Gao, W.3
Ma, S.4
Zhong, R.5
Han, J.6
Baldwin, J.K.7
Zelenay, P.8
-
39
-
-
84948406972
-
2 Batteries
-
2 Batteries Adv. Funct. Mater. 2015, 25, 6913-6920 10.1002/adfm.201503077
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 6913-6920
-
-
Zhao, C.1
Yu, C.2
Liu, S.3
Yang, J.4
Fan, X.5
Huang, H.6
Qiu, J.7
-
40
-
-
84941663830
-
2 Batteries
-
2 Batteries ACS Catal. 2015, 5, 4309-4317 10.1021/acscatal.5b00332
-
(2015)
ACS Catal.
, vol.5
, pp. 4309-4317
-
-
Jing, Y.1
Zhou, Z.2
-
41
-
-
82455192742
-
Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen
-
Wang, S.; Iyyamperumal, E.; Roy, A.; Xue, Y.; Yu, D.; Dai, L. Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen Angew. Chem., Int. Ed. 2011, 50, 11756-11760 10.1002/anie.201105204
-
(2011)
Angew. Chem., Int. Ed.
, vol.50
, pp. 11756-11760
-
-
Wang, S.1
Iyyamperumal, E.2
Roy, A.3
Xue, Y.4
Yu, D.5
Dai, L.6
-
42
-
-
84859993188
-
BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction
-
Wang, S.; Zhang, L.; Xia, Z.; Roy, A.; Chang, D. W.; Baek, J.; Dai, L. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction Angew. Chem., Int. Ed. 2012, 51, 4209-4212 10.1002/anie.201109257
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 4209-4212
-
-
Wang, S.1
Zhang, L.2
Xia, Z.3
Roy, A.4
Chang, D.W.5
Baek, J.6
Dai, L.7
-
43
-
-
84876561736
-
B, N-and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media
-
Choi, C. H.; Chung, M. W.; Kwon, H. C.; Park, S. H.; Woo, S. I. B, N-and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media J. Mater. Chem. A 2013, 1, 3694-3699 10.1039/c3ta01648j
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 3694-3699
-
-
Choi, C.H.1
Chung, M.W.2
Kwon, H.C.3
Park, S.H.4
Woo, S.I.5
-
44
-
-
84873805390
-
Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?
-
Zhao, Y.; Yang, L.; Chen, S.; Wang, X.; Ma, Y.; Wu, Q.; Jiang, Y.; Qian, W.; Hu, Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 2013, 135, 1201-1204 10.1021/ja310566z
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 1201-1204
-
-
Zhao, Y.1
Yang, L.2
Chen, S.3
Wang, X.4
Ma, Y.5
Wu, Q.6
Jiang, Y.7
Qian, W.8
Hu, Z.9
-
45
-
-
0036827661
-
First-principles computation of material properties: The ABINIT software project
-
Gonze, X.; Beuken, J.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F. First-principles computation of material properties: the ABINIT software project Comput. Mater. Sci. 2002, 25, 478-492 10.1016/S0927-0256(02)00325-7
-
(2002)
Comput. Mater. Sci.
, vol.25
, pp. 478-492
-
-
Gonze, X.1
Beuken, J.2
Caracas, R.3
Detraux, F.4
Fuchs, M.5
Rignanese, G.6
Sindic, L.7
Verstraete, M.8
Zerah, G.9
Jollet, F.10
-
46
-
-
4243943295
-
Generalized gradient approximation made simple
-
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple Phys. Rev. Lett. 1996, 77, 3865-3868 10.1103/PhysRevLett.77.3865
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
47
-
-
0011236321
-
From ultrasoft pseudopotentials to the projector augmented-wave method
-
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758-1775 10.1103/PhysRevB.59.1758
-
(1999)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.59
, pp. 1758-1775
-
-
Kresse, G.1
Joubert, D.2
-
48
-
-
35648959236
-
4: Surface energy, structure, Wulff shape, and surface redox potential
-
4: Surface energy, structure, Wulff shape, and surface redox potential Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 165435 10.1103/PhysRevB.76.165435
-
(2007)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.76
-
-
Wang, L.1
Zhou, F.2
Meng, Y.3
Ceder, G.4
-
50
-
-
84855927066
-
Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not
-
Radin, M. D.; Rodriguez, J. F.; Tian, F.; Siegel, D. J. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not J. Am. Chem. Soc. 2012, 134, 1093-1103 10.1021/ja208944x
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 1093-1103
-
-
Radin, M.D.1
Rodriguez, J.F.2
Tian, F.3
Siegel, D.J.4
-
51
-
-
83455177061
-
2 batteries
-
2 batteries J. Chem. Phys. 2011, 135, 214704 10.1063/1.3663385
-
(2011)
J. Chem. Phys.
, vol.135
-
-
Viswanathan, V.1
Thygesen, K.S.2
Hummelshøj, J.3
Nørskov, J.K.4
Girishkumar, G.5
McCloskey, B.6
Luntz, A.7
-
52
-
-
82755161209
-
First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery
-
Mo, Y.; Ong, S. P.; Ceder, G. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 205446 10.1103/PhysRevB.84.205446
-
(2011)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.84
-
-
Mo, Y.1
Ong, S.P.2
Ceder, G.3
-
53
-
-
77955722548
-
2 reduction by lithium on Au (111) and Pt (111)
-
2 reduction by lithium on Au (111) and Pt (111) J. Chem. Phys. 2010, 133, 024703 10.1063/1.3447381
-
(2010)
J. Chem. Phys.
, vol.133
-
-
Xu, Y.1
Shelton, W.A.2
-
55
-
-
84878039144
-
Oxygen reduction reaction on active sites of heteroatom-doped graphene
-
Fan, X.; Zheng, W.; Kuo, J. Oxygen reduction reaction on active sites of heteroatom-doped graphene RSC Adv. 2013, 3, 5498-5505 10.1039/c3ra23016c
-
(2013)
RSC Adv.
, vol.3
, pp. 5498-5505
-
-
Fan, X.1
Zheng, W.2
Kuo, J.3
-
56
-
-
84936976960
-
Two-Dimensional Boron-Nitrogen-Carbon Monolayers with Tunable Direct Band Gaps
-
Zhang, M.; Gao, G.; Kutana, A.; Wang, Y.; Zou, X.; Tse, J. S.; Yakobson, B. I.; Li, H.; Liu, H.; Ma, Y. Two-Dimensional Boron-Nitrogen-Carbon Monolayers with Tunable Direct Band Gaps Nanoscale 2015, 7, 12023-12029 10.1039/C5NR03344F
-
(2015)
Nanoscale
, vol.7
, pp. 12023-12029
-
-
Zhang, M.1
Gao, G.2
Kutana, A.3
Wang, Y.4
Zou, X.5
Tse, J.S.6
Yakobson, B.I.7
Li, H.8
Liu, H.9
Ma, Y.10
-
57
-
-
65549116313
-
First-principles study of two-and one-dimensional honeycomb structures of boron nitride
-
Topsakal, M.; Aktürk, E.; Ciraci, S. First-principles study of two-and one-dimensional honeycomb structures of boron nitride Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 115442 10.1103/PhysRevB.79.115442
-
(2009)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.79
-
-
Topsakal, M.1
Aktürk, E.2
Ciraci, S.3
-
58
-
-
77955563153
-
B and N codoping effect on electronic transport in carbon nanotubes
-
Khalfoun, H.; Hermet, P.; Henrard, L.; Latil, S. B and N codoping effect on electronic transport in carbon nanotubes Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 193411 10.1103/PhysRevB.81.193411
-
(2010)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.81
-
-
Khalfoun, H.1
Hermet, P.2
Henrard, L.3
Latil, S.4
-
59
-
-
79958739975
-
Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells
-
Zhang, L.; Xia, Z. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells J. Phys. Chem. C 2011, 115, 11170-11176 10.1021/jp201991j
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 11170-11176
-
-
Zhang, L.1
Xia, Z.2
-
60
-
-
84894523154
-
Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells
-
Zhang, L.; Niu, J.; Li, M.; Xia, Z. Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells J. Phys. Chem. C 2014, 118, 3545-3553 10.1021/jp410501u
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 3545-3553
-
-
Zhang, L.1
Niu, J.2
Li, M.3
Xia, Z.4
-
61
-
-
79960644627
-
Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction
-
Yang, L.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.; Wu, Q.; Ma, J.; Ma, Y.; Hu, Z. Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction Angew. Chem. 2011, 123, 7270-7273 10.1002/ange.201101287
-
(2011)
Angew. Chem.
, vol.123
, pp. 7270-7273
-
-
Yang, L.1
Jiang, S.2
Zhao, Y.3
Zhu, L.4
Chen, S.5
Wang, X.6
Wu, Q.7
Ma, J.8
Ma, Y.9
Hu, Z.10
-
62
-
-
77149173768
-
Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery
-
Hummelshøj, J. S.; Blomqvist, J.; Datta, S.; Vegge, T.; Rossmeisl, J.; Thygesen, K. S.; Luntz, A.; Jacobsen, K. W.; Nørskov, J. K. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery J. Chem. Phys. 2010, 132, 071101 10.1063/1.3298994
-
(2010)
J. Chem. Phys.
, vol.132
-
-
Hummelshøj, J.S.1
Blomqvist, J.2
Datta, S.3
Vegge, T.4
Rossmeisl, J.5
Thygesen, K.S.6
Luntz, A.7
Jacobsen, K.W.8
Nørskov, J.K.9
|