메뉴 건너뛰기




Volumn 20, Issue 6, 2015, Pages 541-556

Influence of Nanoclay on the Mechanical Performance of Wild Cane Grass Fiber-Reinforced Polyester Nanocomposites

Author keywords

Mechanical properties; Nanoclay (MMT); Polyester resin; Wild cane fibers

Indexed keywords

FIBER REINFORCED PLASTICS; FIBERS; IMPACT STRENGTH; MECHANICAL PROPERTIES; NANOSTRUCTURED MATERIALS; POLYESTER RESINS; REINFORCEMENT; TENSILE STRENGTH;

EID: 84983573950     PISSN: 1023666X     EISSN: 15635341     Source Type: Journal    
DOI: 10.1080/1023666X.2015.1053335     Document Type: Article
Times cited : (26)

References (27)
  • 1
    • 36348999675 scopus 로고    scopus 로고
    • Influence of nanoclay on properties of HDPE/wood composites
    • Y.Lei,, Q.Wu, C.M.Clemons, F.Yao, and Y.Xu. 2007. Influence of nanoclay on properties of HDPE/wood composites. J. Appl. Polym. Sci. 106: 3958–3966.
    • (2007) J. Appl. Polym. Sci. , vol.106 , pp. 3958-3966
    • Lei, Y.1    Wu, Q.2    Clemons, C.M.3    Yao, F.4    Xu, Y.5
  • 2
    • 84866002863 scopus 로고    scopus 로고
    • Development of banana/glass short hybrid fiber reinforced nanochitosan polymer composites
    • A.Musbashirunnisa,, K.Vijayalakshimi, and T.Gomathi. 2012. Development of banana/glass short hybrid fiber reinforced nanochitosan polymer composites. Der Pharm. Let. 4(4): 1162–1168.
    • (2012) Der Pharm. Let. , vol.4 , Issue.4 , pp. 1162-1168
    • Musbashirunnisa, A.1    Vijayalakshimi, K.2    Gomathi, T.3
  • 3
    • 84873138276 scopus 로고    scopus 로고
    • Experimental investigation of mechanical properties of golden cane fiber reinforced polyester composites
    • A.V.Ratna Prasad,, K.Mohana Rao, and A.V.S.S.K.S.Gupta. 2013. Experimental investigation of mechanical properties of golden cane fiber reinforced polyester composites. Int. J. Polymer Anal. Charact. 18(1): 30–39.
    • (2013) Int. J. Polymer Anal. Charact. , vol.18 , Issue.1 , pp. 30-39
    • Ratna Prasad, A.V.1    Mohana Rao, K.2    Gupta, A.V.S.S.K.S.3
  • 4
    • 84855814483 scopus 로고    scopus 로고
    • Mechanical properties and thermal conductivity of Typha angustifolia natural fiber–reinforced polyester composites
    • K.Ramanaiah,, A.V.Ratna Prasad, and K.Hemachandra Reddy. 2011. Mechanical properties and thermal conductivity of Typha angustifolia natural fiber–reinforced polyester composites. Int. J. Polym. Anal. Charact. 16(7): 496–503.
    • (2011) Int. J. Polym. Anal. Charact. , vol.16 , Issue.7 , pp. 496-503
    • Ramanaiah, K.1    Ratna Prasad, A.V.2    Hemachandra Reddy, K.3
  • 6
    • 84873937273 scopus 로고    scopus 로고
    • Mechanical and thermo-physical properties of fish tail palm tree natural fiber–reinforced polyester composites
    • K.Ramanaiah, A.V.Ratna Prasad, and K.Hemachandra Reddy. 2013. Mechanical and thermo-physical properties of fish tail palm tree natural fiber–reinforced polyester composites. Int. J. Polym. Anal. Charact. 18(2): 126–136.
    • (2013) Int. J. Polym. Anal. Charact. , vol.18 , Issue.2 , pp. 126-136
    • Ramanaiah, K.1    Ratna Prasad, A.V.2    Hemachandra Reddy, K.3
  • 7
    • 85043025457 scopus 로고    scopus 로고
    • The natural fiber polymer composite industry in Europe technology and markets. Proceedings of the Progress on Wood Fiber-Plastic Composites Conference, University of Toronto and Materials and Manufacturing Ontario, Toronto, Canada
    • D.Plackett, 2002. The natural fiber polymer composite industry in Europe technology and markets. Proceedings of the Progress on Wood Fiber-Plastic Composites Conference, University of Toronto and Materials and Manufacturing Ontario, Toronto, Canada.
    • (2002)
    • Plackett, D.1
  • 8
    • 85043009700 scopus 로고    scopus 로고
    • The Use of Natural Fibres in Nonwoven Structures for Applications as Automotive Substrates. Reference NF0309. London: Ministry of Agriculture Fisheries and Food, Agri-Industrial Materials
    • G.C.Ellison,, and R.McNaught. 2000. The Use of Natural Fibres in Nonwoven Structures for Applications as Automotive Substrates. Reference NF0309. London: Ministry of Agriculture Fisheries and Food, Agri-Industrial Materials.
    • (2000)
    • Ellison, G.C.1    McNaught, R.2
  • 9
    • 0026108787 scopus 로고    scopus 로고
    • The nature of adhesion in composites of modified cellulose fibers and polypropylene
    • J.M.Felix,, and P.Gatenholm. 2001. The nature of adhesion in composites of modified cellulose fibers and polypropylene. J. Appl. Polym. Sci. 42(3): 609–620.
    • (2001) J. Appl. Polym. Sci. , vol.42 , Issue.3 , pp. 609-620
    • Felix, J.M.1    Gatenholm, P.2
  • 11
    • 57749196190 scopus 로고    scopus 로고
    • Bamboo-fiber filled high density polyethylene composites: Effect of coupling treatment and nanoclay
    • G.Han.,, Y.Lei, Q.Wu, Y.Kojima, and S.Suzuki. 2008. Bamboo-fiber filled high density polyethylene composites: Effect of coupling treatment and nanoclay. J. Polym. Environ. Sci. 16: 123–130.
    • (2008) J. Polym. Environ. Sci. , vol.16 , pp. 123-130
    • Han, G.1    Lei, Y.2    Wu, Q.3    Kojima, Y.4    Suzuki, S.5
  • 12
    • 84867504811 scopus 로고    scopus 로고
    • Bio-based nanocomposites: An alternative to traditional composites
    • J.S.Tate,, A.T.Akinola, and D.Kabakov. 2009. Bio-based nanocomposites: An alternative to traditional composites. J. Technol. Stud. 35: 25–31.
    • (2009) J. Technol. Stud. , vol.35 , pp. 25-31
    • Tate, J.S.1    Akinola, A.T.2    Kabakov, D.3
  • 13
    • 33947626700 scopus 로고    scopus 로고
    • New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane
    • X.Cao,, H.Dong, and C.M.Li. 2007. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3): 899–904.
    • (2007) Biomacromolecules , vol.8 , Issue.3 , pp. 899-904
    • Cao, X.1    Dong, H.2    Li, C.M.3
  • 15
    • 84872837014 scopus 로고    scopus 로고
    • Kenaf bast fibers—Part II: Inorganic nanoparticle impregnation for polymer composites
    • J.Shi,, S.Q.Shi, H.M.Barnes, M.F.Horstemeyer, and G.Wang. 2011. Kenaf bast fibers—Part II: Inorganic nanoparticle impregnation for polymer composites. Int. J. Polym. Sci. 32(1): 381–392.
    • (2011) Int. J. Polym. Sci. , vol.32 , Issue.1 , pp. 381-392
    • Shi, J.1    Shi, S.Q.2    Barnes, H.M.3    Horstemeyer, M.F.4    Wang, G.5
  • 16
    • 84859885968 scopus 로고    scopus 로고
    • A study of nanoclay reinforcement of biocomposites made by liquid composite molding
    • F.Bensadoun,, N.Kchit, C.Billotte, S.Bickerton, F.Trochu, and E.Ruiz. 2011. A study of nanoclay reinforcement of biocomposites made by liquid composite molding. Int. J. Polym. Sci. 45(6): 698–704.
    • (2011) Int. J. Polym. Sci. , vol.45 , Issue.6 , pp. 698-704
    • Bensadoun, F.1    Kchit, N.2    Billotte, C.3    Bickerton, S.4    Trochu, F.5    Ruiz, E.6
  • 17
    • 36248990683 scopus 로고    scopus 로고
    • Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites
    • J.Juntaro,, M.Pommet, A.Mantalaris, M.Shaffer, and A.Bismarck. 2007. Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos. Interfaces 14(7): 753–762.
    • (2007) Compos. Interfaces , vol.14 , Issue.7 , pp. 753-762
    • Juntaro, J.1    Pommet, M.2    Mantalaris, A.3    Shaffer, M.4    Bismarck, A.5
  • 18
    • 46849109098 scopus 로고    scopus 로고
    • Surface modification of natural fibers using bacteria: Depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites
    • M.Pommet,, J.Juntaro, J.Y.Y.Heng, A.Mantalaris, A.F.Lee, K.Wilson, G.Kalinka, M.S.P.Shaffer, and A.Bismarck. 2008. Surface modification of natural fibers using bacteria: Depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9(6): 1643–1651.
    • (2008) Biomacromolecules , vol.9 , Issue.6 , pp. 1643-1651
    • Pommet, M.1    Juntaro, J.2    Heng, J.Y.Y.3    Mantalaris, A.4    Lee, A.F.5    Wilson, K.6    Kalinka, G.7    Shaffer, M.S.P.8    Bismarck, A.9
  • 19
    • 79960554866 scopus 로고    scopus 로고
    • Mechanical, thermal and dynamic-mechanical behavior of banana fiber reinforced polypropylene nanocomposites
    • M.Biswal,, S.Mohanty, and S.K.Nayak. 2011. Mechanical, thermal and dynamic-mechanical behavior of banana fiber reinforced polypropylene nanocomposites. Polym. Compos. 32(8): 1190–1201.
    • (2011) Polym. Compos. , vol.32 , Issue.8 , pp. 1190-1201
    • Biswal, M.1    Mohanty, S.2    Nayak, S.K.3
  • 20
    • 79954441363 scopus 로고    scopus 로고
    • The effects of nanoclay on the extrusion foaming of wood fiber/polyethylene nanocomposites
    • Y.H.Lee,, T.Kuboki, C.B.Park, and M.Sain. 2011. The effects of nanoclay on the extrusion foaming of wood fiber/polyethylene nanocomposites. Polym. Eng. Sci. 51(5): 1014–1022.
    • (2011) Polym. Eng. Sci. , vol.51 , Issue.5 , pp. 1014-1022
    • Lee, Y.H.1    Kuboki, T.2    Park, C.B.3    Sain, M.4
  • 21
    • 78651499026 scopus 로고    scopus 로고
    • Effects of nanoclay and coupling agent on the physico-mechanical, morphological, and thermal properties of wood flour/polypropylene composites
    • H.Z.Tabari,, A.Nourbakhsh, and A.Ashori. 2011. Effects of nanoclay and coupling agent on the physico-mechanical, morphological, and thermal properties of wood flour/polypropylene composites. Polym. Eng. Sci. 51(2): 272–277.
    • (2011) Polym. Eng. Sci. , vol.51 , Issue.2 , pp. 272-277
    • Tabari, H.Z.1    Nourbakhsh, A.2    Ashori, A.3
  • 22
    • 78249256067 scopus 로고    scopus 로고
    • Nanoclay-reinforced, polypropylene-based wood–plastic composites
    • S.-K.Yeh,, and R.K.Gupta. 2010. Nanoclay-reinforced, polypropylene-based wood–plastic composites. Polym. Eng. Sci. 50(10): 2013–2020.
    • (2010) Polym. Eng. Sci. , vol.50 , Issue.10 , pp. 2013-2020
    • Yeh, S.-K.1    Gupta, R.K.2
  • 23
    • 67649117850 scopus 로고    scopus 로고
    • Innovative green nanocomposites based on silicate clays/lignin/natural fibres
    • N.Guigo,, L.Vincent, A.Mija, H.Naegele, and N.Sbirrazzuoli. 2009. Innovative green nanocomposites based on silicate clays/lignin/natural fibres. Compos. Sci. Technol. 69(11): 1979–1984.
    • (2009) Compos. Sci. Technol. , vol.69 , Issue.11 , pp. 1979-1984
    • Guigo, N.1    Vincent, L.2    Mija, A.3    Naegele, H.4    Sbirrazzuoli, N.5
  • 24
    • 79959617856 scopus 로고    scopus 로고
    • Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites
    • Y.Okahisa,, K.Abe, M.Nogi, A.N.Nakagaito, T.Nakatani, and H.Yano. 2011. Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos. Sci. Technol. 71(10): 1342–1347.
    • (2011) Compos. Sci. Technol. , vol.71 , Issue.10 , pp. 1342-1347
    • Okahisa, Y.1    Abe, K.2    Nogi, M.3    Nakagaito, A.N.4    Nakatani, T.5    Yano, H.6
  • 25
    • 70349854560 scopus 로고    scopus 로고
    • Influence of organically modified nanoclay on the performance of pineapple leaf fiber-reinforced polypropylene nanocomposites
    • M.Biswal,, S.Mohanty, and S.K.Nayak. 2009. Influence of organically modified nanoclay on the performance of pineapple leaf fiber-reinforced polypropylene nanocomposites. J. Appl. Polym. Sci. 114(6): 4091–4103.
    • (2009) J. Appl. Polym. Sci. , vol.114 , Issue.6 , pp. 4091-4103
    • Biswal, M.1    Mohanty, S.2    Nayak, S.K.3
  • 26
    • 84862869091 scopus 로고    scopus 로고
    • Crystallization behavior of natural fiber reinforced plastic nanocomposite
    • B.Kord, 2011. Crystallization behavior of natural fiber reinforced plastic nanocomposite. World Appl. Sci. J. 13(6): 1329–1332.
    • (2011) World Appl. Sci. J. , vol.13 , Issue.6 , pp. 1329-1332
    • Kord, B.1
  • 27
    • 79751537952 scopus 로고    scopus 로고
    • A study on flexural properties of wildcane grass fiber-reinforced composites
    • A.V.Ratna Prasad,, K.Mohana Rao, A.V.S.S.K.S.Gupta, and B.V.Reddy. 2011. A study on flexural properties of wildcane grass fiber-reinforced composites. J. Mater. Sci. 46(8): 2627–2634.
    • (2011) J. Mater. Sci. , vol.46 , Issue.8 , pp. 2627-2634
    • Ratna Prasad, A.V.1    Mohana Rao, K.2    Gupta, A.V.S.S.K.S.3    Reddy, B.V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.