메뉴 건너뛰기




Volumn , Issue , 2016, Pages 71-76

Deep learning for human activity recognition: A resource efficient implementation on low-power devices

Author keywords

ActiveMiles; Deep Learning; HAR; Low Power Devices

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; MOBILE DEVICES; PATTERN RECOGNITION; SENSOR NODES; WEARABLE TECHNOLOGY;

EID: 84983465856     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BSN.2016.7516235     Document Type: Conference Paper
Times cited : (236)

References (21)
  • 1
    • 84893936376 scopus 로고    scopus 로고
    • A Tutorial on human activity recognition using Body-worn inertial sensors
    • Jan.
    • A. Bulling, U. Blanke, and B. Schiele, "A Tutorial on Human Activity Recognition Using Body-worn Inertial Sensors," ACM Comput. Surv., vol. 46, no. 3, Jan. 2014.
    • (2014) ACM Comput. Surv. , vol.46 , Issue.3
    • Bulling, A.1    Blanke, U.2    Schiele, B.3
  • 7
    • 84947128497 scopus 로고    scopus 로고
    • On the use of ensemble of classifiers for accelerometer-based activity recognition
    • Dec.
    • C. Catal, S. Tufekci, E. Pirmit, and G. Kocabag, "On the use of ensemble of classifiers for accelerometer-based activity recognition," Applied Soft Computing, vol. 37, pp. 1018-1022, Dec. 2015.
    • (2015) Applied Soft Computing , vol.37 , pp. 1018-1022
    • Catal, C.1    Tufekci, S.2    Pirmit, E.3    Kocabag, G.4
  • 15
    • 84881311778 scopus 로고    scopus 로고
    • A survey on human activity recognition using wearable sensors
    • O. D. Lara and M. A. Labrador, "A Survey on Human Activity Recognition using Wearable Sensors," IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1192-1209, 2013.
    • (2013) IEEE Communications Surveys & Tutorials , vol.15 , Issue.3 , pp. 1192-1209
    • Lara, O.D.1    Labrador, M.A.2
  • 16
    • 56749180547 scopus 로고    scopus 로고
    • Timefrequency feature representation using energy concentration: An overview of recent advances
    • Jan.
    • E. Sejdic, I. Djurovic, and J. Jiang, "Timefrequency feature representation using energy concentration: An overview of recent advances," Digital Signal Processing, vol. 19, no. 1, pp. 153-183, Jan. 2009.
    • (2009) Digital Signal Processing , vol.19 , Issue.1 , pp. 153-183
    • Sejdic, E.1    Djurovic, I.2    Jiang, J.3
  • 17
    • 20744449792 scopus 로고    scopus 로고
    • The design and implementation of fftw3
    • M. Frigo and S. G. Johnson, "The design and implementation of fftw3," Proceedings of the IEEE, vol. 93, no. 2, pp. 216-231, 2005.
    • (2005) Proceedings of the IEEE , vol.93 , Issue.2 , pp. 216-231
    • Frigo, M.1    Johnson, S.G.2
  • 19
    • 80054964826 scopus 로고    scopus 로고
    • Activity recognition using cell phone accelerometers
    • Mar.
    • J. R. Kwapisz, G. M. Weiss, and S. A. Moore, "Activity Recognition Using Cell Phone Accelerometers," SIGKDD Explor. Newsl., vol. 12, no. 2, pp. 74-82, Mar. 2011.
    • (2011) SIGKDD Explor. Newsl. , vol.12 , Issue.2 , pp. 74-82
    • Kwapisz, J.R.1    Weiss, G.M.2    Moore, S.A.3
  • 21
    • 49949109801 scopus 로고    scopus 로고
    • Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by dynamic sensor selection
    • in Wireless Sensor Networks R. Verdone, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg ch. 2
    • P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and G. Troster, "Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection," in Wireless Sensor Networks, ser. Lecture Notes in Computer Science, R. Verdone, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, vol. 4913, ch. 2, pp. 17-33.
    • (2008) Lecture Notes in Computer Science , vol.4913 , pp. 17-33
    • Zappi, P.1    Lombriser, C.2    Stiefmeier, T.3    Farella, E.4    Roggen, D.5    Benini, G.6    Troster, L.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.