메뉴 건너뛰기




Volumn 28, Issue 11, 2017, Pages 2592-2604

Global sensitivity estimates for neural network classifiers

Author keywords

Feedforward neural networks; Functional decomposition; Global sensitivity analysis (GSA); Multiclassification; Product unit neural networks (PUNNs)

Indexed keywords

ANALYSIS OF VARIANCE (ANOVA); FUNCTIONS; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS;

EID: 84983050058     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2016.2598657     Document Type: Article
Times cited : (72)

References (56)
  • 2
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • R. Andrews, J. Diederich, and A. B. Tickle, "Survey and critique of techniques for extracting rules from trained artificial neural networks," Knowl.-Based Syst., vol. 8, no. 6, pp. 373-389, 1995.
    • (1995) Knowl.-Based Syst , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 3
    • 83655193106 scopus 로고    scopus 로고
    • Extracting rules from neural networks as decision diagrams
    • Dec
    • J. Chorowski and J. M. Zurada, "Extracting rules from neural networks as decision diagrams," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 2435-2446, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.12 , pp. 2435-2446
    • Chorowski, J.1    Zurada, J.M.2
  • 5
    • 0027644780 scopus 로고
    • Knowledge acquisition of conjunctive rules using multilayered neural networks
    • S. Sestito and T. Dillon, "Knowledge acquisition of conjunctive rules using multilayered neural networks," Int. J. Intell. Syst., vol. 8, no. 7, pp. 779-805, 1993.
    • (1993) Int. J. Intell. Syst , vol.8 , Issue.7 , pp. 779-805
    • Sestito, S.1    Dillon, T.2
  • 6
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • D. G. Garson, "Interpreting neural-network connection weights," AI Expert, vol. 6, no. 4, pp. 46-51, 1991.
    • (1991) AI Expert , vol.6 , Issue.4 , pp. 46-51
    • Garson, D.G.1
  • 7
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • S. Dreiseitl and L. Ohno-Machado, "Logistic regression and artificial neural network classification models: A methodology review," J. Biomed. Informat., vol. 35, nos. 5-6, pp. 352-359, 2002.
    • (2002) J. Biomed. Informat , vol.35 , Issue.5-6 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 8
    • 0032526110 scopus 로고    scopus 로고
    • Epidemiologic interpretation of artificial neural networks
    • M.-S. Duh, A. M. Walker, and J. Z. Ayanian, "Epidemiologic interpretation of artificial neural networks," Amer. J. Epidemiol., vol. 147, no. 12, pp. 1112-1122, 1998.
    • (1998) Amer. J. Epidemiol , vol.147 , Issue.12 , pp. 1112-1122
    • Duh, M.-S.1    Walker, A.M.2    Ayanian, J.Z.3
  • 9
    • 0035871395 scopus 로고    scopus 로고
    • Comparison of artificial neural networks with other statistical approaches
    • D. J. Sargent, "Comparison of artificial neural networks with other statistical approaches," Cancer, vol. 91, no. S8, pp. 1636-1642, 2001.
    • (2001) Cancer , vol.91 , Issue.S8 , pp. 1636-1642
    • Sargent, D.J.1
  • 10
    • 85037071555 scopus 로고    scopus 로고
    • Predicting time-to-relapse in breast cancer using neural networks
    • DTIC Document, Tech. Rep
    • J. D. Buckley, "Predicting time-to-relapse in breast cancer using neural networks," Univ. Southern California Los Angeles, DTIC Document, Tech. Rep., 1997.
    • (1997) Univ. Southern California Los Angeles
    • Buckley, J.D.1
  • 13
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the 'black box': A randomization approach for understanding variable contributions in artificial neural networks
    • J. D. Olden and D. A. Jackson, "Illuminating the 'black box': A randomization approach for understanding variable contributions in artificial neural networks," Ecol. Model., vol. 154, nos. 1-2, pp. 135-150, 2002.
    • (2002) Ecol. Model , vol.154 , Issue.1-2 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 14
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • B. Cheng and D. M. Titterington, "Neural networks: A review from a statistical perspective," Statist. Sci., vol. 9, no. 1, pp. 2-30, 1994.
    • (1994) Statist. Sci , vol.9 , Issue.1 , pp. 2-30
    • Cheng, B.1    Titterington, D.M.2
  • 15
    • 85084737696 scopus 로고
    • Sensitivity analysis for feedforward artificial neural networks with differentiable activation functions
    • S. Hashem, "Sensitivity analysis for feedforward artificial neural networks with differentiable activation functions," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), vol. 1. 1992, pp. 419-424.
    • (1992) Proc. Int. Joint Conf. Neural Netw. (IJCNN) , vol.1 , pp. 419-424
    • Hashem, S.1
  • 17
    • 0002206019 scopus 로고
    • Use of some sensitivity criteria for choosing networks with good generalization ability
    • Y. Dimopoulos, P. Bourret, and S. Lek, "Use of some sensitivity criteria for choosing networks with good generalization ability," Neural Process. Lett., vol. 2, no. 6, pp. 1-4, 1995.
    • (1995) Neural Process. Lett , vol.2 , Issue.6 , pp. 1-4
    • Dimopoulos, Y.1    Bourret, P.2    Lek, S.3
  • 18
    • 0029727311 scopus 로고    scopus 로고
    • A sensitivity analysis algorithm for pruning feedforward neural networks
    • Jun
    • A. P. Engelbrecht and I. Cloete, "A sensitivity analysis algorithm for pruning feedforward neural networks," in Proc. IEEE Int. Conf. Neural Netw., vol. 2. Jun. 1996, pp. 1274-1277.
    • (1996) Proc. IEEE Int. Conf. Neural Netw , vol.2 , pp. 1274-1277
    • Engelbrecht, A.P.1    Cloete, I.2
  • 19
    • 0035505658 scopus 로고    scopus 로고
    • A new pruning heuristic based on variance analysis of sensitivity information
    • Nov
    • A. P. Engelbrecht, "A new pruning heuristic based on variance analysis of sensitivity information," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1386-1399, Nov. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.6 , pp. 1386-1399
    • Engelbrecht, A.P.1
  • 21
    • 0034187691 scopus 로고    scopus 로고
    • Data strip mining for the virtual design of pharmaceuticals with neural networks
    • May
    • R. H. Kewley, M. J. Embrechts, and C. Breneman, "Data strip mining for the virtual design of pharmaceuticals with neural networks," IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 668-679, May 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.3 , pp. 668-679
    • Kewley, R.H.1    Embrechts, M.J.2    Breneman, C.3
  • 23
    • 0031553665 scopus 로고    scopus 로고
    • Perturbation method for deleting redundant inputs of perceptron networks
    • J. M. Zurada, A. Malinowski, and S. Usui, "Perturbation method for deleting redundant inputs of perceptron networks," Neurocomputing, vol. 14, no. 2, pp. 177-193, 1997.
    • (1997) Neurocomputing , vol.14 , Issue.2 , pp. 177-193
    • Zurada, J.M.1    Malinowski, A.2    Usui, S.3
  • 24
    • 0025404853 scopus 로고
    • Sensitivity of feedforward neural networks to weight errors
    • Mar
    • M. Stevenson, R. Winter, and B. Widrow, "Sensitivity of feedforward neural networks to weight errors," IEEE Trans. Neural Netw., vol. 1, no. 1, pp. 71-80, Mar. 1990.
    • (1990) IEEE Trans. Neural Netw , vol.1 , Issue.1 , pp. 71-80
    • Stevenson, M.1    Winter, R.2    Widrow, B.3
  • 25
    • 0035506957 scopus 로고    scopus 로고
    • Sensitivity analysis of multilayer perceptron to input and weight perturbations
    • Nov
    • X. Zeng and D. S. Yeung, "Sensitivity analysis of multilayer perceptron to input and weight perturbations," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1358-1366, Nov. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.6 , pp. 1358-1366
    • Zeng, X.1    Yeung, D.S.2
  • 28
    • 0000909011 scopus 로고
    • Global sensitivity analysis
    • H. M. Wagner, "Global sensitivity analysis," Oper. Res., vol. 43, no. 6, pp. 948-969, 1995.
    • (1995) Oper. Res , vol.43 , Issue.6 , pp. 948-969
    • Wagner, H.M.1
  • 29
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares methods and their application to non-linear system identification," Int. J. Control, vol. 50, no. 5, pp. 1873-1896, 1989.
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 30
    • 0036740201 scopus 로고    scopus 로고
    • Fast orthogonal forward selection algorithm for feature subset selection
    • Sep
    • K. Z. Mao, "Fast orthogonal forward selection algorithm for feature subset selection," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1218-1224, Sep. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.13 , Issue.5 , pp. 1218-1224
    • Mao, K.Z.1
  • 31
    • 84904689115 scopus 로고    scopus 로고
    • Global sensitivity analysis approach for input selection and system identification purposes-A new framework for feedforward neural networks
    • Aug
    • E. Fock, "Global sensitivity analysis approach for input selection and system identification purposes-A new framework for feedforward neural networks," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 8, pp. 1484-1495, Aug. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst , vol.25 , Issue.8 , pp. 1484-1495
    • Fock, E.1
  • 32
    • 0033079533 scopus 로고    scopus 로고
    • A quantitative modelindependent method for global sensitivity analysis of model output
    • A. Saltelli, S. Tarantola, and K. P.-S. Chan, "A quantitative modelindependent method for global sensitivity analysis of model output," Technometrics, vol. 41, no. 1, pp. 39-56, 1999.
    • (1999) Technometrics , vol.41 , Issue.1 , pp. 39-56
    • Saltelli, A.1    Tarantola, S.2    Chan, K.P.-S.3
  • 33
    • 0034926426 scopus 로고    scopus 로고
    • Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
    • I. M. Sobol, "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates," Math. Comput. Simul., vol. 55, nos. 1-3, pp. 271-280, 2001.
    • (2001) Math. Comput. Simul , vol.55 , Issue.1-3 , pp. 271-280
    • Sobol, I.M.1
  • 34
    • 0000221271 scopus 로고
    • Product units: A computationally powerful and biologically plausible extension to backpropagation networks
    • R. Durbin and D. E. Rumelhart, "Product units: A computationally powerful and biologically plausible extension to backpropagation networks," Neural Comput., vol. 1, no. 1, pp. 133-142, 1989.
    • (1989) Neural Comput , vol.1 , Issue.1 , pp. 133-142
    • Durbin, R.1    Rumelhart, D.E.2
  • 35
    • 0000807470 scopus 로고
    • On sensitivity estimation for nonlinear mathematical models
    • I. M. Sobol, "On sensitivity estimation for nonlinear mathematical models," Matematicheskoe Modelirovanie, vol. 2, no. 1, pp. 112-118, 1990.
    • (1990) Matematicheskoe Modelirovanie , vol.2 , Issue.1 , pp. 112-118
    • Sobol, I.M.1
  • 38
    • 69249217895 scopus 로고    scopus 로고
    • Multinomial logistic regression and product unit neural network models: Application of a new hybrid methodology for solving a classification problem in the livestock sector
    • M. Torres, C. Hervás, and C. García, "Multinomial logistic regression and product unit neural network models: Application of a new hybrid methodology for solving a classification problem in the livestock sector," Expert Syst. Appl., vol. 36, no. 10, pp. 12225-12235, 2009.
    • (2009) Expert Syst. Appl , vol.36 , Issue.10 , pp. 12225-12235
    • Torres, M.1    Hervás, C.2    García, C.3
  • 39
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Apr
    • G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.
    • (2012) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 40
    • 84869475733 scopus 로고    scopus 로고
    • Meta-cognitive RBF network and its projection based learning algorithm for classification problems
    • G. S. Babu and S. Suresh, "Meta-cognitive RBF network and its projection based learning algorithm for classification problems," Appl. Soft Comput., vol. 13, no. 1, pp. 654-666, 2013.
    • (2013) Appl. Soft Comput , vol.13 , Issue.1 , pp. 654-666
    • Babu, G.S.1    Suresh, S.2
  • 43
    • 78650843583 scopus 로고    scopus 로고
    • Hybridizing logistic regression with product unit and RBF networks for accurate detection and prediction of banking crises
    • Oct
    • P. A. Gutiérrez et al., "Hybridizing logistic regression with product unit and RBF networks for accurate detection and prediction of banking crises," Omega, vol. 38, no. 5, pp. 333-344, Oct. 2010.
    • (2010) Omega , vol.38 , Issue.5 , pp. 333-344
    • Gutiérrez, P.A.1
  • 44
    • 79958018912 scopus 로고    scopus 로고
    • Determination of relative agrarian technical efficiency by a dynamic over-sampling procedure guided by minimum sensitivity
    • F. Fernández-Navarro, C. Hervás-Martínez, C. García-Alonso, and M. Torres-Jimenez, "Determination of relative agrarian technical efficiency by a dynamic over-sampling procedure guided by minimum sensitivity," Expert Syst. Appl., vol. 38, no. 10, pp. 12483-12490, 2011.
    • (2011) Expert Syst. Appl , vol.38 , Issue.10 , pp. 12483-12490
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    García-Alonso, C.3    Torres-Jimenez, M.4
  • 45
    • 35748982409 scopus 로고    scopus 로고
    • JCLEC: A Java framework for evolutionary computation
    • S. Ventura, C. Romero, A. Zafra, J. A. Delgado, and C. Hervás, "JCLEC: A Java framework for evolutionary computation," Soft Comput., vol. 12, no. 4, pp. 381-392, 2008.
    • (2008) Soft Comput , vol.12 , Issue.4 , pp. 381-392
    • Ventura, S.1    Romero, C.2    Zafra, A.3    Delgado, J.A.4    Hervás, C.5
  • 47
    • 57749204350 scopus 로고    scopus 로고
    • Calculations of Sobol indices for the Gaussian process metamodel
    • A. Marrel, B. Iooss, B. Laurent, and O. Roustant, "Calculations of Sobol indices for the Gaussian process metamodel," Rel. Eng. Syst. Safety, vol. 94, no. 3, pp. 742-751, 2009.
    • (2009) Rel. Eng. Syst. Safety , vol.94 , Issue.3 , pp. 742-751
    • Marrel, A.1    Iooss, B.2    Laurent, B.3    Roustant, O.4
  • 48
    • 84859218882 scopus 로고    scopus 로고
    • Global sensitivity analysis of stochastic computer models with joint metamodels
    • A. Marrel, B. Iooss, S. Da Veiga, and M. Ribatet, "Global sensitivity analysis of stochastic computer models with joint metamodels," Statist. Comput., vol. 22, no. 3, pp. 833-847, 2011.
    • (2011) Statist. Comput , vol.22 , Issue.3 , pp. 833-847
    • Marrel, A.1    Iooss, B.2    Da Veiga, S.3    Ribatet, M.4
  • 49
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • J. D. Olden, M. K. Joy, and R. G. Death, "An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data," Ecol. Model., vol. 178, nos. 3-4, pp. 389-397, 2004.
    • (2004) Ecol. Model , vol.178 , Issue.3-4 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 50
    • 0000876857 scopus 로고    scopus 로고
    • On quasi-Monte Carlo integrations
    • I. M. Sobol, "On quasi-Monte Carlo integrations," Math. Comput. Simul., vol. 47, nos. 2-5, pp. 103-112, 1998.
    • (1998) Math. Comput. Simul , vol.47 , Issue.2-5 , pp. 103-112
    • Sobol, I.M.1
  • 51
    • 85027928537 scopus 로고    scopus 로고
    • Ordinal regression by a generalized force-based model
    • Apr
    • F. Fernández-Navarro, A. Riccardi, and S. Carloni, "Ordinal regression by a generalized force-based model," IEEE Trans. Cybern., vol. 45, no. 4, pp. 844-857, Apr. 2015.
    • (2015) IEEE Trans. Cybern , vol.45 , Issue.4 , pp. 844-857
    • Fernández-Navarro, F.1    Riccardi, A.2    Carloni, S.3
  • 52
    • 70549087439 scopus 로고    scopus 로고
    • A comparison of sensitivity analysis techniques for complex models for environment management
    • Melbourne, VIC, Australia
    • J. K. Ravalico, H. R. Maier, G. C. Dandy, J. P. Norton, and B. F. W. Croke, "A comparison of sensitivity analysis techniques for complex models for environment management," in Proc. 16th Int. Congr. Modelling Simulation, Melbourne, VIC, Australia, 2005, pp. 2533-2539.
    • (2005) Proc. 16th Int. Congr. Modelling Simulation , pp. 2533-2539
    • Ravalico, J.K.1    Maier, H.R.2    Dandy, G.C.3    Norton, J.P.4    Croke, B.F.W.5
  • 53
    • 84953649167 scopus 로고
    • Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. i Theory
    • R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek, and J. H. Schaibly, "Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory," J. Chem. Phys., vol. 59, no. 8, pp. 3873-3878, 1973.
    • (1973) J. Chem. Phys , vol.59 , Issue.8 , pp. 3873-3878
    • Cukier, R.I.1    Fortuin, C.M.2    Shuler, K.E.3    Petschek, A.G.4    Schaibly, J.H.5
  • 54
    • 0019926821 scopus 로고
    • Global sensitivity analysis-A computational implementation of the Fourier amplitude sensitivity test (FAST)
    • G. J. McRae, J. W. Tilden, and J. H. Seinfeld, "Global sensitivity analysis-A computational implementation of the Fourier amplitude sensitivity test (FAST)," Comput. Chem. Eng., vol. 6, no. 1, pp. 15-25, 1982.
    • (1982) Comput. Chem. Eng , vol.6 , Issue.1 , pp. 15-25
    • McRae, G.J.1    Tilden, J.W.2    Seinfeld, J.H.3
  • 55
    • 84861142004 scopus 로고    scopus 로고
    • Sensitivity analysis for volcanic source modeling quality assessment and model selection
    • Jul
    • F. Cannavó, "Sensitivity analysis for volcanic source modeling quality assessment and model selection," Comput. Geosci., vol. 44, pp. 52-59, Jul. 2012.
    • (2012) Comput. Geosci , vol.44 , pp. 52-59
    • Cannavó, F.1
  • 56
    • 0031233348 scopus 로고    scopus 로고
    • Are artificial neural networks black boxes?
    • J. M. Benítez, J. L. Castro, and I. Requena, "Are artificial neural networks black boxes?" IEEE Trans. Neural Netw., vol. 8, no. 5, pp. 1156-1164, 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.5 , pp. 1156-1164
    • Benítez, J.M.1    Castro, J.L.2    Requena, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.