메뉴 건너뛰기




Volumn 505, Issue , 2016, Pages 344-360

Real rank with respect to varieties

Author keywords

Maximal rank; Rank with respect to variety; Real rank; Tensor; Typical rank

Indexed keywords

GEOMETRY;

EID: 84981713235     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.laa.2016.04.035     Document Type: Article
Times cited : (23)

References (18)
  • 2
    • 84937526056 scopus 로고    scopus 로고
    • On maximum, typical and generic ranks
    • [2] Blekherman, Grigoriy, Teitler, Zach, On maximum, typical and generic ranks. Math. Ann., 2014, 1–11.
    • (2014) Math. Ann. , pp. 1-11
    • Blekherman, G.1    Teitler, Z.2
  • 3
    • 0003313986 scopus 로고    scopus 로고
    • Real Algebraic Geometry
    • Springer-Verlag Berlin translated from the 1987 French original, revised by the authors
    • [3] Bochnak, Jacek, Coste, Michel, Roy, Marie-Françoise, Real Algebraic Geometry. Ergeb. Math. Grenzgeb. (3), vol. 36, 1998, Springer-Verlag, Berlin translated from the 1987 French original, revised by the authors.
    • (1998) Ergeb. Math. Grenzgeb. (3) , vol.36
    • Bochnak, J.1    Coste, M.2    Roy, M.-F.3
  • 4
    • 78650731430 scopus 로고    scopus 로고
    • On the maximum rank of a real binary form
    • [4] Causa, A., Re, R., On the maximum rank of a real binary form. Ann. Mat. Pura Appl. (4) 190:1 (2011), 55–59.
    • (2011) Ann. Mat. Pura Appl. (4) , vol.190 , Issue.1 , pp. 55-59
    • Causa, A.1    Re, R.2
  • 5
    • 78651383517 scopus 로고    scopus 로고
    • On the rank of a binary form
    • [5] Comas, Gonzalo, Seiguer, Malena, On the rank of a binary form. Found. Comput. Math. 11:1 (2011), 65–78.
    • (2011) Found. Comput. Math. , vol.11 , Issue.1 , pp. 65-78
    • Comas, G.1    Seiguer, M.2
  • 6
    • 84859573509 scopus 로고    scopus 로고
    • On the typical rank of real binary forms
    • [6] Comon, Pierre, Ottaviani, Giorgio, On the typical rank of real binary forms. Linear Multilinear Algebra 60:6 (2012), 657–667.
    • (2012) Linear Multilinear Algebra , vol.60 , Issue.6 , pp. 657-667
    • Comon, P.1    Ottaviani, G.2
  • 8
    • 70350683097 scopus 로고    scopus 로고
    • Polynomials, roots, and interlacing
    • available at arXiv:math/0612833v2
    • [8] Fisk, Steve, Polynomials, roots, and interlacing. available at arXiv:math/0612833v2.
    • Fisk, S.1
  • 9
    • 85100672658 scopus 로고
    • Principles of Algebraic Geometry
    • John Wiley & Sons, Inc. New York reprint of the 1978 original
    • [9] Griffiths, Phillip, Harris, Joseph, Principles of Algebraic Geometry. Wiley Classics Libr., 1994, John Wiley & Sons, Inc., New York reprint of the 1978 original.
    • (1994) Wiley Classics Libr.
    • Griffiths, P.1    Harris, J.2
  • 10
    • 0003199354 scopus 로고    scopus 로고
    • Power Sums, Gorenstein Algebras, and Determinantal Loci
    • Springer-Verlag Berlin Appendix C by Iarrobino and Steven L. Kleiman
    • [10] Iarrobino, Anthony, Kanev, Vassil, Power Sums, Gorenstein Algebras, and Determinantal Loci. Lecture Notes in Math., vol. 1721, 1999, Springer-Verlag, Berlin Appendix C by Iarrobino and Steven L. Kleiman.
    • (1999) Lecture Notes in Math. , vol.1721
    • Iarrobino, A.1    Kanev, V.2
  • 11
    • 0010992883 scopus 로고
    • Théorèmes de Bertini et applications
    • Birkhäuser Boston, Inc. Boston, MA
    • [11] Jouanolou, Jean-Pierre, Théorèmes de Bertini et applications. Progr. Math., vol. 42, 1983, Birkhäuser Boston, Inc., Boston, MA.
    • (1983) Progr. Math. , vol.42
    • Jouanolou, J.-P.1
  • 12
    • 84941994640 scopus 로고    scopus 로고
    • Hyperbolic polynomials, interlacers, and sums of squares
    • [12] Kummer, Mario, Plaumann, Daniel, Vinzant, Cynthia, Hyperbolic polynomials, interlacers, and sums of squares. Math. Program. Ser. B 153 (2015), 223–245.
    • (2015) Math. Program. Ser. B , vol.153 , pp. 223-245
    • Kummer, M.1    Plaumann, D.2    Vinzant, C.3
  • 13
    • 77953324429 scopus 로고    scopus 로고
    • On the ranks and border ranks of symmetric tensors
    • [13] Landsberg, J.M., Teitler, Zach, On the ranks and border ranks of symmetric tensors. Found. Comput. Math. 10:3 (2010), 339–366.
    • (2010) Found. Comput. Math. , vol.10 , Issue.3 , pp. 339-366
    • Landsberg, J.M.1    Teitler, Z.2
  • 14
    • 0010915099 scopus 로고
    • Higher secant varieties of curves and the theorem of Nagata on ruled surfaces
    • [14] Lange, Herbert, Higher secant varieties of curves and the theorem of Nagata on ruled surfaces. Manuscripta Math. 47:1–3 (1984), 263–269.
    • (1984) Manuscripta Math. , vol.47 , Issue.1-3 , pp. 263-269
    • Lange, H.1
  • 15
    • 0008106666 scopus 로고
    • A note on hyperbolic polynomials
    • [15] Nuij, Wim, A note on hyperbolic polynomials. Math. Scand. 23 (1968), 69–72.
    • (1968) Math. Scand. , vol.23 , pp. 69-72
    • Nuij, W.1
  • 16
    • 33645982640 scopus 로고    scopus 로고
    • Analytic Theory of Polynomials
    • The Clarendon Press, Oxford University Press Oxford
    • [16] Rahman, Q.I., Schmeisser, G., Analytic Theory of Polynomials. London Math. Soc. Monogr. New Ser., vol. 26, 2002, The Clarendon Press, Oxford University Press, Oxford.
    • (2002) London Math. Soc. Monogr. New Ser. , vol.26
    • Rahman, Q.I.1    Schmeisser, G.2
  • 17
    • 84983069977 scopus 로고    scopus 로고
    • On the length of binary forms
    • Springer New York
    • [17] Reznick, Bruce, On the length of binary forms. Quadratic and Higher Degree Forms Dev. Math., vol. 31, 2013, Springer, New York, 207–232.
    • (2013) Quadratic and Higher Degree Forms, Dev. Math. , vol.31 , pp. 207-232
    • Reznick, B.1
  • 18
    • 0142202396 scopus 로고
    • On an elementary proof and demonstration of Sir Isaac Newton's hitherto undemonstrated rule for the discovery of imaginary roots
    • Paper 84 in Mathematical Papers, vol. 2 Chelsea New York originally published by Cambridge University Press in 1908
    • [18] Sylvester, J.J., On an elementary proof and demonstration of Sir Isaac Newton's hitherto undemonstrated rule for the discovery of imaginary roots. Proc. Lond. Math. Soc. 1 (1865/1866), 1–16 Paper 84 in Mathematical Papers, vol. 2, 1973, Chelsea, New York originally published by Cambridge University Press in 1908.
    • (1866) Proc. Lond. Math. Soc. , vol.1 , pp. 1-16
    • Sylvester, J.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.