-
1
-
-
84855668127
-
Non-defectivity of Grassmannians of planes
-
Abo, H., Ottaviani, G., Peterson, C.: Non-defectivity of Grassmannians of planes. J. Algebr. Geom. 21(1), 1–20 (2012)
-
(2012)
J. Algebr. Geom.
, vol.21
, Issue.1
-
-
Abo, H.1
Ottaviani, G.2
Peterson, C.3
-
2
-
-
0001703522
-
Joins and higher secant varieties
-
Ådlandsvik, B.: Joins and higher secant varieties. Math. Scand. 61(2), 213–222 (1987)
-
(1987)
Math. Scand.
, vol.61
, Issue.2
, pp. 213-222
-
-
Ådlandsvik, B.1
-
3
-
-
0001189855
-
Polynomial interpolation in several variables
-
Alexander, J., Hirschowitz, A.: Polynomial interpolation in several variables. J. Algebr. Geom. 4(2), 201–222 (1995)
-
(1995)
J. Algebr. Geom.
, vol.4
, Issue.2
, pp. 201-222
-
-
Alexander, J.1
Hirschowitz, A.2
-
4
-
-
0007775677
-
On the maximal multiplicative complexity of a family of bilinear forms
-
Atkinson, M.D., Stephens, N.M.: On the maximal multiplicative complexity of a family of bilinear forms. Linear Algebra Appl. 27, 1–8 (1979)
-
(1979)
Linear Algebra Appl.
, vol.27
-
-
Atkinson, M.D.1
Stephens, N.M.2
-
5
-
-
33947620357
-
Bounds on the ranks of some (Formula Presented.)-tensors
-
Atkinson, M.D., Lloyd, S.: Bounds on the ranks of some $$3$$3-tensors. Linear Algebra Appl. 31, 19–31 (1980)
-
(1980)
Linear Algebra Appl.
, vol.31
, pp. 19-31
-
-
Atkinson, M.D.1
Lloyd, S.2
-
6
-
-
84937532700
-
-
Ballico, E., De Paris, A.: Generic power sum decompositions and bounds for the Waring rank (2013). [math.AG]
-
Ballico, E., De Paris, A.: Generic power sum decompositions and bounds for the Waring rank (2013). arXiv:1312.3494 [math.AG]
-
-
-
-
7
-
-
84977819724
-
Symmetric tensor rank and scheme rank: an upper bound in terms of secant varieties. Geometry 2013
-
Ballico, E.: Symmetric tensor rank and scheme rank: an upper bound in terms of secant varieties. Geometry 2013. Article ID 614195 (2013). doi:10.1155/2013/614195
-
(2013)
Article ID 614195
-
-
Ballico, E.1
-
8
-
-
80053608854
-
An upper bound for the (Formula Presented.) in positive characteristic
-
Ballico, E.: An upper bound for the $$X$$X-ranks of points of $$\mathbb{P}^n$$Pn in positive characteristic. Albanian J. Math. 5(1), 3–10 (2011)
-
(2011)
Albanian J. Math.
, vol.5
, Issue.1
, pp. 3-10
-
-
Ballico, E.1
-
9
-
-
79959639350
-
Multihomogeneous polynomial decomposition using moment matrices
-
Bernardi, A., Brachat, J., Comon, P., Mourrain, B.: Multihomogeneous polynomial decomposition using moment matrices. In: ISSAC 2011—Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation. ACM, New York, pp. 35–42 (2011)
-
(2011)
ISSAC 2011—Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation. ACM, New York
, pp. 35-42
-
-
Bernardi, A.1
Brachat, J.2
Comon, P.3
Mourrain, B.4
-
10
-
-
84906346882
-
-
Bernardi, A., Brachat, J., Mourrain, B.: A comparison of different notions of ranks of symmetric tensors (2012). [math.AG]
-
Bernardi, A., Brachat, J., Mourrain, B.: A comparison of different notions of ranks of symmetric tensors (2012). arXiv:1210.8169 [math.AG]
-
-
-
-
11
-
-
34548364466
-
Combinatorial secant varieties
-
part 1
-
Bernd, S., Seth, S.: Combinatorial secant varieties. Pure Appl. Math. Q. 2(3), 867–891 (2003). part 1
-
(2003)
Pure Appl. Math. Q.
, vol.2
, Issue.3
, pp. 867-891
-
-
Bernd, S.1
Seth, S.2
-
12
-
-
77953776386
-
Representations of multivariate polynomials by sums of univariate polynomials in linear forms
-
Białynicki-Birula, A., Schinzel, A.: Representations of multivariate polynomials by sums of univariate polynomials in linear forms. Colloq. Math. 112(2), 201–233 (2008)
-
(2008)
Colloq. Math.
, vol.112
, Issue.2
, pp. 201-233
-
-
Białynicki-Birula, A.1
Schinzel, A.2
-
13
-
-
84937532703
-
-
Blekherman, G.: Typical real ranks of binary forms (2012). [math.AG]
-
Blekherman, G.: Typical real ranks of binary forms (2012). arXiv:1205.3257 [math.AG]
-
-
-
-
14
-
-
84937532704
-
-
French original: Revised by the authors
-
Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36. Springer, Berlin, Translated from the 1987 French original, Revised by the authors (1998)
-
(1998)
Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36. Springer, Berlin, Translated from the
, vol.1987
-
-
Bochnak, J.1
Coste, M.2
Roy, M.-F.3
-
15
-
-
79959319405
-
Monomials as sums of powers: the real binary case
-
Boij, M., Carlini, E., Geramita, A.V.: Monomials as sums of powers: the real binary case. Proc. Am. Math. Soc. 139(9), 3039–3043 (2011)
-
(2011)
Proc. Am. Math. Soc.
, vol.139
, Issue.9
, pp. 3039-3043
-
-
Boij, M.1
Carlini, E.2
Geramita, A.V.3
-
16
-
-
77957252013
-
Symmetric tensor decomposition
-
Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E.: Symmetric tensor decomposition. Linear Algebra Appl. 433(11–12), 1851–1872 (2010)
-
(2010)
Linear Algebra Appl.
, vol.433
, Issue.11-12
, pp. 1851-1872
-
-
Brachat, J.1
Comon, P.2
Mourrain, B.3
Tsigaridas, E.4
-
17
-
-
84869396668
-
Ranks of tensors and a generalization of secant varieties
-
Buczyński, J., Landsberg, J.M.: Ranks of tensors and a generalization of secant varieties. Linear Algebra Appl. 438(2), 668–689 (2013)
-
(2013)
Linear Algebra Appl.
, vol.438
, Issue.2
, pp. 668-689
-
-
Buczyński, J.1
Landsberg, J.M.2
-
18
-
-
84909992809
-
-
Carlini, E., Oneto, A.: Monomials as sums of (Formula Presented.)-th powers of forms (2013). [math.AC]
-
Carlini, E., Oneto, A.: Monomials as sums of $$k$$k-th powers of forms (2013). arXiv:1305.4553 [math.AC]
-
-
-
-
19
-
-
79751483139
-
Secant varieties of $$\mathbb{P}^1\times \dots \times \mathbb{P}^1$$P1×⋯×P1 ($$n$$n-times) are not defective for $$n\ge 5$$n≥5
-
Catalisano, M.V., Geramita, A.V., Gimigliano, A.: Secant varieties of $$\mathbb{P}^1\times \dots \times \mathbb{P}^1$$P1×⋯×P1 ($$n$$n-times) are not defective for $$n\ge 5$$n≥5. J. Algebr. Geom. 20(2), 295–327 (2011)
-
(2011)
J. Algebr. Geom
, vol.20
, Issue.2
, pp. 295-327
-
-
Catalisano, M.V.1
Geramita, A.V.2
Gimigliano, A.3
-
21
-
-
84937532707
-
-
De Paris, A.: A proof that the maximal rank for plane quartics is seven (2013).
-
De Paris, A.: A proof that the maximal rank for plane quartics is seven (2013). arXiv:1309.6475
-
-
-
-
22
-
-
73249134837
-
-
39, Birkhäuser Verlag, Basel
-
Drton, M., Sturmfels, B., Sullivant, S.: Lectures on algebraic statistics, Oberwolfach Seminars, vol. 39. Birkhäuser Verlag, Basel (2009)
-
(2009)
Lectures on algebraic statistics, Oberwolfach Seminars
-
-
Drton, M.1
Sturmfels, B.2
Sullivant, S.3
-
23
-
-
80655149002
-
On the generic and typical ranks of 3-tensors
-
Friedland, S.: On the generic and typical ranks of 3-tensors. Linear Algebra Appl. 436(3), 478–497 (2012)
-
(2012)
Linear Algebra Appl.
, vol.436
, Issue.3
, pp. 478-497
-
-
Friedland, S.1
-
24
-
-
84859619047
-
On the Waring problem for polynomial rings
-
Fröberg, R., Ottaviani, G., Shapiro, B.: On the Waring problem for polynomial rings. Proc. Natl. Acad. Sci. USA 109(15), 5600–5602 (2012)
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, Issue.15
, pp. 5600-5602
-
-
Fröberg, R.1
Ottaviani, G.2
Shapiro, B.3
-
25
-
-
0037721483
-
Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals, The Curves Seminar at Queen’s, vol
-
Geramita, Anthony V.: Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals, The Curves Seminar at Queen’s, vol. X. Queen’s papers in Pure and Appl. Math., vol. 102. Queen’s Univ. Kingston, pp. 2–114 (1995)
-
(1995)
X. Queen’s papers in Pure and Appl. Math., vol. 102. Queen’s Univ. Kingston
, pp. 2-114
-
-
Geramita, A.V.1
-
26
-
-
0007234487
-
-
Berlin: Appendix C by Iarrobino and Steven L. Kleiman
-
Iarrobino, A., Kanev, V.: Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721. Springer, Berlin (1999) (Appendix C by Iarrobino and Steven L. Kleiman)
-
(1999)
Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721. Springer
-
-
Iarrobino, A.1
Kanev, V.2
-
27
-
-
84937532708
-
-
Jelisiejew, J.: An upper bound for the Waring rank of a form (2013). [math.AC]
-
Jelisiejew, J.: An upper bound for the Waring rank of a form (2013). arXiv:1305.6957 [math.AC]
-
-
-
-
29
-
-
77953732344
-
Representing a homogenous polynomial as a sum of powers of linear forms, Master’s thesis
-
Kleppe, J.: Representing a homogenous polynomial as a sum of powers of linear forms, Master’s thesis. University of Oslo (1999). http://folk.uio.no/johannkl/kleppe-master
-
(1999)
University of Oslo
-
-
Kleppe, J.1
-
30
-
-
77953324429
-
On the ranks and border ranks of symmetric tensors
-
Landsberg, J.M., Zach, T.: On the ranks and border ranks of symmetric tensors. Found. Comp. Math. 10(3), 339–366 (2010)
-
(2010)
Found. Comp. Math.
, vol.10
, Issue.3
, pp. 339-366
-
-
Landsberg, J.M.1
Zach, T.2
-
32
-
-
0007725617
-
Typical tensorial rank
-
Lickteig, T.: Typical tensorial rank. Linear Algebra Appl. 69, 95–120 (1985)
-
(1985)
Linear Algebra Appl.
, vol.69
, pp. 95-120
-
-
Lickteig, T.1
-
33
-
-
84879879475
-
J.: On Kruskal’s theorem that every $$3\times 3\times 3$$3×3×3 array has rank at most 5
-
Murray, R., Bremner, Hu, J.: On Kruskal’s theorem that every $$3\times 3\times 3$$3×3×3 array has rank at most 5. Linear Algebra Appl. 439(2), 401–421 (2013)
-
(2013)
Linear Algebra Appl
, vol.439
, Issue.2
, pp. 401-421
-
-
Murray, R.1
Bremner, H.2
-
34
-
-
84977808944
-
Forms as sums of powers of lower degree forms, Slides from a talk at the SIAM Conference on Applied Algebraic Geometry
-
Reznick, B.: Forms as sums of powers of lower degree forms, Slides from a talk at the SIAM Conference on Applied Algebraic Geometry, Fort Collins (2013). http://www.math.uiuc.edu/reznick/8213f-pm
-
(2013)
Fort Collins
-
-
Reznick, B.1
-
35
-
-
84983069977
-
On the length of binary forms
-
Springer, Newyork
-
Reznick, B.: On the length of binary forms. In: Alladi, K., Bhargava, M., Savitt, D., Tiep, P. (eds.) Quadratic and Higher Degree Forms (New York), Developments in Math., vol. 31. Springer, Newyork, pp. 207–232 (2013)
-
(2013)
Quadratic and Higher Degree Forms (New York), Developments in Math., vol. 31
, pp. 207-232
-
-
Reznick, B.1
Alladi, K.2
Bhargava, M.3
Savitt, D.4
Tiep, P.5
-
38
-
-
84937532711
-
-
Sumi, T., Sakata, T., Miyazaki, M.: Rank of tensors with size (Formula Presented.) (2013). [math.RA]
-
Sumi, T., Sakata, T., Miyazaki, M.: Rank of tensors with size $$2 \times \cdots \times 2$$2×⋯×2 (2013). arXiv:1306.0708 [math.RA]
-
-
-
-
39
-
-
77958070995
-
About the maximal rank of 3-tensors over the real and the complex number field
-
Sumi, T., Miyazaki, M., Sakata, T.: About the maximal rank of 3-tensors over the real and the complex number field. Ann. Inst. Stat. Math. 62(4), 807–822 (2010)
-
(2010)
Ann. Inst. Stat. Math.
, vol.62
, Issue.4
, pp. 807-822
-
-
Sumi, T.1
Miyazaki, M.2
Sakata, T.3
-
40
-
-
84977814995
-
An essay on canonical forms, supplement to a sketch of a memoir on elimination, transformation and canonical forms, originally published by George Bell, Fleet Street, London, 1851. Paper 34 in Mathematical Papers, vol. 1
-
Sylvester, J.J.: An essay on canonical forms, supplement to a sketch of a memoir on elimination, transformation and canonical forms, originally published by George Bell, Fleet Street, London, 1851. Paper 34 in Mathematical Papers, vol. 1. Chelsea, New York (1973) (originally published by Cambridge University Press in 1904, 1851)
-
(1904)
Chelsea, New York (1973) (originally published by Cambridge University Press in
, pp. 1851
-
-
Sylvester, J.J.1
|